
Canary: Congestion-Aware In-Network Allreduce Using Dynamic Trees

Daniele De Sensia,c,∗, Edgar Costa Molerob, Salvatore Di Girolamoa, Laurent Vanbeverb, Torsten Hoeflera

aDept. of Computer Science, ETH Zurich, Rämistrasse 101, Zürich, 8092, Switzerland
bDept. of Information Technology and Electrical Engineering, ETH Zurich, Rämistrasse 101, Zürich, 8092, Switzerland

cDept. of Computer Science, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy

Abstract

The allreduce operation is an essential building block for many distributed applications, ranging from the training of deep learning
models to scientific computing. In an allreduce operation, data from multiple hosts is aggregated together and then broadcasted to
each host participating in the operation. Allreduce performance can be improved by a factor of two by aggregating the data directly
in the network. Switches aggregate data coming from multiple ports before forwarding the partially aggregated result to the next
hop. In all existing solutions, each switch needs to know the ports from which it will receive the data to aggregate. However, this
forces packets to traverse a predefined set of switches, making these solutions prone to congestion. For this reason, we design
Canary, the first congestion-aware in-network allreduce algorithm. Canary uses load balancing algorithms to forward packets on
the least congested paths. Because switches do not know from which ports they will receive the data to aggregate, they use timeouts
to aggregate the data in a best-effort way. We develop a P4 Canary prototype and evaluate it on a Tofino switch. We then validate
Canary through simulations on large networks, showing performance improvements up to 40% compared to the state-of-the-art.

Keywords: in-network compute, allreduce, load balancing

1. Introduction

As the parallelism in computing systems steadily increases,
the performance scalability of applications running on data cen-
ters becomes more dependent on communication performance.
The allreduce operation is a widely-used communication prim-
itive, both for the training of machine learning models [1], but
also in scientific computing in general [2, 3]. In an allreduce,
each host has a vector of data elements. All the vectors must be
reduced (i.e., aggregated) together element-wise using a com-
mutative and associative operator. Then, after aggregation, data
is distributed back to the hosts.

Allreduce accounts for a significant fraction of the train-
ing time of deep learning models, with estimates ranging from
50% for 10 Gbps networks [4], to 20-30% for 100 Gbps net-
works [5]. Moreover, improvements in computation speed sig-
nificantly outpace network bandwidth improvements. For ex-
ample, we observed a 10x increase in GPU floating-point per-
formance in 2.5 years [6, 4]. In contrast, it took ten years for
network bandwidth to increase by 10x [7, 4]. Thus, we can
expect application performance to be even more dependent on
communication performance in the future.

For these reasons, several allreduce optimization techniques
have been proposed [1], including (but not limited to) data quan-
tization [8], sparsification [9], non-blocking collectives [10, 11],

∗Corresponding author
Email addresses: desensi@di.uniroma1.it (Daniele De Sensi),

cedgar@ethz.ch (Edgar Costa Molero),
salvatore.digirolamo@inf.ethz.ch (Salvatore Di Girolamo),
lvanbever@ethz.ch (Laurent Vanbever),
torsten.hoefler@inf.ethz.ch (Torsten Hoefler)

solo allreduce [12], hierarchical synchronization [13, 14], and
in-network reductions [4, 15, 16, 5]. This work focuses on in-
network reductions, i.e., solutions where the network switches
aggregate data. Several works showed that in-network allre-
duce transmits half of the data volume transmitted by the host-
based bandwidth-optimal allreduce algorithm [17] (e.g., ring
allreduce) [15, 4, 5]. Thus, if the network aggregates the data at
line rate, this potentially halves the time required to complete
the reduction.

All existing in-network allreduce algorithms adopt a simi-
lar approach [4, 15, 18, 16, 19, 5], which we describe through
an example. Let us consider the network depicted in Figure 1a,
where the hosts H0, H1, and H3-H6 want to perform an in-
network allreduce. First, they set up a reduction tree, where the
leaves are the hosts participating in the reduction, and the inter-
mediate nodes are a subset of the switches in the network, as
shown in Figure 1b. This setup step mostly involves installing
forwarding rules in the switches. By doing so, for example, S4
knows that it must aggregate the data coming from H0 and H1,
and forward the aggregated result to S2. Similarly, S5 does not
wait for data coming from H2, and forwards the data coming
from H3 to S2 immediately after receiving it.

Albeit the described algorithm is simple and effective, it is
also prone to congestion, because each switch in the reduction
tree needs to know a priori its children and its parent in the re-
duction tree. This forces packets to be always routed on the
same paths, regardless of their congestion. Network congestion
can significantly slow down applications [20, 21, 22, 23, 24],
and this is particularly relevant for in-network reductions. For
example, let us assume that the link between S7 and S0 in Fig-

Preprint submitted to Future Generation Computer Systems October 21, 2023

S2 S3

S4 S5

H0 H1 H2 H3

S6 S7

S8 S9

H4 H5 H6 H7

S0 S1

(a) A network with 8 hosts.

S2

S4 S5

H0 H1 H3

S7

S8 S9

H4 H5 H6

S0

(b) A reduction tree.

Figure 1: In-network allreduce example.

ure 1 is congested. Even if S0 already received the data from all
its other children, it still needs to wait for the data coming from
S7 before starting the broadcast phase.

Thus, it is enough to have congestion on just one of the
links composing the reduction tree to slow down the entire
operation. A straightforward solution would consist in running
the allreduce traffic in a separate traffic class. However, as we
also show in Section 5.2.4, concurrent allreduces issued by dif-
ferent applications (e.g., different training jobs) would still in-
terfere unless they are mapped to different classes. Because the
number of concurrent allreduces can be higher than the avail-
able traffic classes [15, 22, 25, 26], this is not a viable solution.

For these reasons, in this work we design and evaluate Ca-
nary (Congestion-Aware In-Network Allreduce Using Dynamic
Trees), the first congestion-aware in-network allreduce al-
gorithm. Canary relies on traffic load balancing algorithms to
send packets on the least congested paths, dynamically build-
ing the reduction tree and adapting it throughout the execution
based on congestion.

To illustrate the impact of congestion on in-network allre-
duce, we simulate a 2-level fat tree network [27] connecting
1024 hosts (we provide more details on the simulation infras-
tructure in Section 5.2). We execute an allreduce first on 1%
and then on 75% of the hosts in the network. We observe in
Figure 2 that, when there is no congestion, both state-of-the-
art in-network allreduce algorithms (using a static reduction
tree) and Canary provide a 2x bandwidth improvement over
the bandwidth-optimal host-based allreduce.

0 25 50 75 100
Goodput (Gb/s)

Without
Congestion

With
Congestion

Allreduce Hosts = 1%

0 25 50 75 100
Goodput (Gb/s)

Allreduce Hosts = 75%

Host-Based
(Band. Optimal)

In-Network
(State of the art)

In-Network
(Canary)

Figure 2: Goodput of the bandwidth-optimal host-based allreduce, of the state-
of-the-art in-network allreduces, and of Canary, when running on 1% and 75%
of the hosts in a 1024 hosts network.

Then, we introduce congestion by concurrently executing a
random uniform injection traffic pattern on the remaining hosts
(99% and 25%, respectively). We observe that congestion causes
a drop in the performance of the state-of-the-art in-network
allreduce, which can even perform worst than the host-based
allreduce.

Instead, Canary is less affected by congestion and provides

a performance advantage over both the bandwidth-optimal host-
based allreduce and state-of-the-art allreduces. As we describe
in detail in Section 3, this is possible because Canary dynam-
ically builds and adapts the reduction tree to the network con-
ditions by relying on existing congestion-aware traffic load bal-
ancing techniques.

In this work, we introduce the following contributions:

• We identify the impact of congestion on in-network allre-
duce, and we design an algorithm that relies on dynamic in-
network reduction trees (Section 3).

• We improve the management of the switch resources and the
fault tolerance compared to the state-of-the-art because the
switches only store a soft state (Section 3).

• We implement a P4 Canary prototype on a Tofino switch [28],
to assess the feasibility and limitations of our algorithm (Sec-
tion 4 and Section 6).

• We perform a detailed analysis through large-scale simula-
tions, calibrated on our P4 implementation (Section 5) show-
ing that, on congested networks, Canary is up to 40% faster
than state-of-the-art in-network allreduce algorithms.

2. State of the Art

We now discuss Canary’s fundamental design principles
(summarized in Table 1), that distinguish it from most existing
in-network allreduce algorithms.

Algorithm/
Network Year CA DRM DFT

PERCS [29] 2010 é ? ?
Aries [30] 2012 é ? ?
Tofu [31] 2018 é ? ?
SHARP [16, 19] 2020 é é é
Klenk et al.[5] 2020 é Ë é
PANAMA [18] 2020 ü Ë é
ATP [15] 2021 é Ë é
SwitchML [4] 2021 é é é
OmniReduce [32] 2021 é é é
PIUMA [33] 2021 é ? é
Flare [34] 2021 é é é
Canary 2022 Ë Ë Ë

Table 1: Canary design principles, and comparison with the state-of-the-art.
Ë: considered, ü: partially considered, é: not considered, ?: unknown.
CA: Congestion-Awareness, DRM: Dynamic Resource Management, DFT:
Dynamic Fault Tolerance.

2.1. Congestion Awareness

Existing interconnection networks have a large path diver-
sity [35, 22] and, to avoid congestion, load balance the traffic
using algorithms like ECMP [36], flowlet switching [37, 38],
Valiant routing [39], and others. Some of these algorithms, like
ECMP, distribute packets over the available paths by selecting
the destination port based on the result of a hash function com-
puted on some packet header fields. However, although many
networks use ECMP [40], it has been shown that traffic often

2

experiences congestion, even in the presence of alternative non-
congested paths [37, 41, 42]. For this reason, some load bal-
ancing algorithms try to select the least congested path among
those available. Such algorithms are also offered by some of
the largest cloud providers when deploying high-performance
virtualized clusters [43, 44].

As discussed, however, all state-of-the-art in-network re-
duction algorithms always send the packets on the same paths
regardless of congestion (Table 1, é). Moreover, to the best
of our knowledge, only one in-network allreduce algorithm dis-
tributes the traffic over multiple reduction trees [18], showing
advantages compared to a single reduction tree (Table 1, ü).
Nevertheless, because the algorithm statically selects trees in a
round-robin way, it is still congestion oblivious, even if it bal-
ances traffic over multiple paths.

Differently from all existing solutions, Canary dynamically
builds, packet by packet, the optimal reduction tree based on
the current network status, by routing packets on the least con-
gested paths, and by aggregating the packets in a best-effort
fashion (Table 1, Ë– Section 3.1). It is worth remarking that
simply adding load balancing capabilities to existing in-network
allreduce algorithms would not work and that we need to design
new ways to aggregate the data, as we discuss in Section 3.

2.2. Dynamic Resource Management

Each switch aggregates in a memory buffer, packet by packet,
the data it receives from its children. Switches, however, have
limited memory, and existing in-network allreduce algorithms
adopt different approaches to deal with this. Most algorithms
reserve some buffer space before starting an allreduce and, if
there is no buffer space available, they fall back to a host-based
algorithm [16, 19, 31, 45]. Because this reservation process re-
quires interacting with the control plane and might introduce
some latency (up to “a few seconds” [18]), resources are usu-
ally reserved when the application starts and deallocated when
the application terminates [16, 19, 4].

However, by doing so, long-lived applications would re-
serve resources for their entire execution, even if they would
only sporadically use in-network reductions, potentially exclud-
ing other applications from using them. This decreases the
number of concurrent in-network reductions that can be exe-
cuted, which might be a relevant problem on multi-tenant dat-
acenters [15] (Table 1, é). Other approaches, instead, dynami-
cally partition the available resources across the currently active
reductions [18, 5, 15], as we also do in Canary (Table 1, Ë–
Section 3.2). Specifically, in Canary the switches allocate and
deallocate the memory in an on-demand fashion and strictly for
the time required to complete the reduction.

2.3. Dynamic Fault Tolerance

Another critical point to discuss is how to deal with links
or switch failures [46, 47]. Because existing algorithms stati-
cally determine the reduction trees, if a link or a switch on the
tree fails, the in-network reduction cannot progress. In most
cases, the network controller detects switch failures [16, 18]
and builds another reduction tree. However, hosts might be

in an inconsistent state after a failure (e.g., some hosts might
have successfully received all the reduced data, whereas oth-
ers might just have received part of the data). Recovering from
such a state might imply re-issuing the entire reduction opera-
tion [16, 19] from scratch on a different reduction tree or falling
back to host-based reductions (Table 1, é). Other solutions [4]
delegate the task of detecting and recovering from failure to the
upper layer.

Canary, on the other hand is self-contained and can au-
tonomously detect and recover from switch failures without re-
starting the entire reduction from scratch. Indeed, Canary builds
reduction trees dynamically and keeps only a soft state in the
switches, and treats switches and links failures in the same way
as a packet loss. In both cases, Canary requires only the re-
transmission of the small fraction of data that was stored in the
switch when it failed (Table 1, Ë– Section 3.3). Because man-
aging both packet losses and switches faults adds complexity
to the algorithm, Canary partitions its functionalities between
switches and a leader host (Section 3.1.4).

3. Canary Design

In general, we can consider in-network allreduce algorithms
composed of two phases: a reduce phase (where data flows
from the hosts to the root of the reduction tree) and a broad-
cast phase (where aggregated data flows from the root to the
hosts). In Canary, hosts send packets to the same root switch
(predetermined before starting the application), but packets are
forwarded on the least congested paths towards the root to by-
pass congestion. Canary is orthogonal to the load balancing
algorithm, and switches can use any existing algorithm to se-
lect the next-hop (either on a per-packet [41] or a per-flowlet
granularity [37]).

Canary aggregates packets that traverse the same switch
in the same time window. Each switch allocates memory on-
demand when receiving packets in the reduce phase and deal-
locates it in the broadcast phase, after sending the aggregated
data to its children. To simplify the description of the algorithm,
we first describe in Section 3.1 a scenario where switches have
infinite memory, where a fully reliable network is used (i.e.,
packets are never dropped and switches/links never fail), and
where there is at most one application at a time using Canary.
We then remove these assumptions in Section 3.2, Section 3.3,
and Section 3.4 respectively.

3.1. General Design

Before describing the details of the algorithm, we analyze
the challenges of using non-predetermined paths in in-network
reductions. For the moment, we assume that each host can fit
all the data it needs to reduce in a single network packet. We
then discuss in Section 3.1.3 how to deal with larger data.

If we consider the network shown in Figure 3, we can see
that if we select S0 as a root and we let packets follow differ-
ent paths from the hosts to the root, S1 and S2 would not know
how many packets they will receive from their children. Ac-
cording to the network conditions, sometimes both S3 and S4

3

S1

S0

S2

S3 S4

H0 H1 H2 H3

S1

S0

S2

S3 S4

H0 H1 H2 H3
C:1 H:4

S1

S0

S2

S3 S4

H0 H1 H2 H3

1 2 3

C:1 H:4 C:1 H:4 C:1 H:4

C:2 H:4 C:2 H:4

C:2 H:4 C:2 H:4

Figure 3: Aggregation counter update. C: aggregation counter, H: number of
hosts.

might decide to forward their packets to S1, sometimes they
might decide to forward their packets to S2, and sometimes S3
might forward packets to S1 and S4 to S2 (or vice-versa). As
a consequence, S1 might receive 0, 1 or 2 packets to aggregate
(and the same for S2). This ambiguity is not present in existing
in-network reduction approaches because packets always fol-
low predetermined paths, and each switch knows exactly how
many packets to wait for and aggregate. For this reason, exist-
ing in-network allreduce algorithms cannot simply be extended
by using congestion-aware traffic load balancing, and a differ-
ent approach must be adopted.

3.1.1. Reduce
Because the switch does not know how many packets to

wait for, in the reduce phase Canary aggregates all packets re-
ceived in a given time window. The first time a switch receives
a reduction packet, it creates a descriptor and stores it in its
memory. The descriptor contains a data accumulator (where
the switch stores the data carried by the packet) and the root ad-
dress (also carried by the packet). The descriptor also contains
a timer that the switch starts when the first reduction packet is
received. After storing the information carried by the packet in
the descriptor, the switch drops the packet. The switch stores
in the descriptor also the list of ports from which it received
the allreduce packets (it will use it to reach the children in the
broadcast phase). For all subsequent packets, the switch aggre-
gates the data carried in the packets with that stored in the accu-
mulator and then drops the packets. When the timeout expires,
the switch retrieves the accumulated data from the descriptor,
stores it in a new packet, and sends it to the next hop towards
the root. The switch selects the next hop using any available
congestion-aware load balancing algorithm, thus dynamically
building the reduction tree depending on the current network
conditions.

Eventually, all packets reach the root and the reduce phase
is concluded. Each packet sent by the hosts carries a counter in-
dicating the number of already reduced packets, together with
the number of hosts participating to that reduction (Figure 3
(1)). Counters coming from multiple packets are summed by
the switches and stored in the descriptor. For example, if S3
reduces the data coming from H0 and H1, it will send a packet
to S1 with a counter equal to 2 (2). At some point the accumu-
lated counter will be equal to the number of hosts (3), meaning
that all data coming from the hosts has been reduced and that
the root can start the broadcast phase.

Intermediate switches might receive some packets after the
timeout expiration if the timeout is too short. In that case, the
packet is identified as a straggler and immediately forwarded to
the next hop. In turn, the following switch considers that packet
as a straggler or not, depending on its timeout. The switch can
determine if a packet is a straggler because it does not deallo-
cate the descriptor until the reduction is completed (which can-
not happen unless all the packets are received and aggregated
by the root). On the other hand, a too large timeout might in-
crease the latency of the packets and the completion time of the
allreduce. However, this is noticeable only for small allreduces,
as we show in Section 5.2.3.

3.1.2. Broadcast
When the broadcast starts, the root retrieves from the de-

scriptor the list of the ports from which it received the data
(i.e., the list of its children), forwards the aggregated data on
those ports, and then deallocates the descriptor. After receiv-
ing a reduced packet from its parent, a switch forwards the
packet to its children and deallocates the descriptor. In a nut-
shell, Canary reserves resources in the switches dynamically
and strictly for the time required to complete the reduce and
broadcast phases. A switch allocates a descriptor when it re-
ceives the first packet going to the root and deallocates it when
it receives the packet coming down from the root. Eventually,
the reduced data reaches the hosts that started the reduction, and
the allreduce operation terminates.

We can notice that, whereas Canary dynamically routes
packets in the reduce phase, in the broadcast phase, it for-
wards them on the same paths used in the reduce phase. A
fully dynamic multicast would require explicit deallocation of
resources because packets might cross different switches than
those used in the reduce phase. This would add unnecessary
complexity to the design of the algorithm because, as we show
in Section 5, Canary can still bypass most of the congestion in
the network. Also, as we discuss in Section 3.1.3, the reduction
tree is dynamically rebuilt on a packet-by-packet basis, thus re-
ducing the probability of finding persistent congestion in the
reduce phase.

Host 0 ID: 0

Host 1

Host 2

Block 2

ID: 0

ID: 0

ID: 1

ID: 1

ID: 1

Packet

ID: 2

ID: 2

ID: 2

ID: 3

ID: 3

ID: 3

ID: 4

ID: 4

ID: 4

Figure 4: Packets and reduction blocks.

3.1.3. Packetization
We assumed so far that all the data to be reduced by a host

would fit in a single network packet. However, this is usually
not the case, and data is often larger than the MTU (Maximum
Transmission Unit). Thus, each host assigns a unique identifier
(id) to each packet it sends, as shown in Figure 4. Packets with
the same id belong to the same reduction block and must be ag-
gregated together by the switch. The switches can now process

4

multiple blocks concurrently and store a separate descriptor for
each block in a table indexed by id. Alongside the data accu-
mulator, the list of children, and the timer, the descriptor also
contains the block id.

For the moment, we assume that there is always space avail-
able to store the descriptor. We then describe in Section 3.2 how
Canary works when the descriptor cannot be stored. To further
improve load balancing, Canary aggregates each block in a dif-
ferent root, determined before starting the application (e.g., the
hosts could select the roots in a round-robin way).

3.1.4. Leader Host
Programmable switches have limited resources and can only

perform simple operations. As a consequence, it is not possible
to fully implement complex tasks such as tracking and retrans-
mission of lost packets or recovery from other switches failures,
and Canary delegates these tasks to a leader host, similarly to
what happens in other algorithms [15]. Reduction packets are
still sent towards the root and aggregated on its path, as we de-
scribed above. However, the root switch sends the aggregated
data to the leader host as soon as the timeout expires (or when
all the expected data is received).

If we consider the example in Figure 3, we could use switch
S4 as root switch, and either H2 or H3 as leader host. The leader
does not send its data on the network. Instead, it waits for data
to arrive from S4, after which it aggregates the received data
with its own, and then starts the broadcast phase. It is worth
remarking that Canary still relies on a root switch that should
aggregate as much data as possible. Ideally, the root should
send to the leader host only one fully aggregated packet, thus
avoiding having the leader receive multiple packets per block,
which would reduce the operation’s bandwidth.

Although this solution increases the latency because pack-
ets need to cross the network stack of the leader [48], it allows
us to partition tasks between hosts and switches. The switches
only perform simple tasks, like aggregating data packets in a
best-effort fashion. On the other hand, the leader host handles
more complex operations like the retransmission of lost pack-
ets (Section 3.3). To reduce the latency required to cross the
network stack, leader functionalities could be offloaded to pro-
grammable NICs [49, 50, 51, 52] or implemented on a high-
performing network stack such as DPDK [53]. Moreover, be-
cause Canary sends each reduction block to a different leader,
the pressure on individual hosts is reduced. Namely, suppose N
hosts participate in the reduction. In that case, each host will
be the leader only for 1 block out of N, thus receiving data at
a much slower rate than line rate, increasing the time budget
available for performing leader tasks.

3.2. Resource Management
Switches have limited memory resources and could not al-

locate memory for all the reductions concurrently executed over
the network. Because Canary relies on adaptive routing, it can-
not reserve any resource because the paths that packets will
take are not known a priori, and reserving resources on all the
network switches would unnecessarily increase resources oc-
cupancy. Instead, Canary stores block descriptors in a static

array and, when a packet is received, the switch maps the id to
a specific array location (e.g., by using a hash function). If the
location is empty, the switch stores data in the accumulator and
initializes the descriptor. Otherwise, if the stored accumulator
belongs to the same id, the switch aggregates the data carried
by the packet with that in the accumulator. If the stored ac-
cumulator belongs to a different id, then we have a collision.
Collisions might happen because the hash function might map
to the same location reduction blocks with different ids (and
that do not need to be aggregated together).

3.2.1. Collisions Management
If there is a collision, the switch cannot store the descrip-

tor of the new block. In principle, the switch could forward the
packet to the next hop, delegating the aggregation to the follow-
ing switches towards the root. However, in this case, the switch
would not be able to participate in the subsequent broadcast
phase as it did not store the descriptor (containing the list of
children) for that id. For example, in Figure 5 (1) hosts H0
(leader), H2, and H5 want to reduce their data. S1 receives data
from H2 and experiences no collisions (2). S2 receives data
from H5 (3) but detects a collision. Let us assume that S2 just
forwards the data to the next hop and the reduction progresses
as normal from that point on.

During the broadcast phase (4), S2 will not be able to for-
ward data to its children because, due to the collision during
the reduction phase, it was not able to store the descriptor that
would contain, among others, the child port identifier. Ulti-
mately, H5 will not receive the reduced data. In general, if a
switch cannot store the block descriptor because of a collision,
the entire subtree rooted at that switch will not be reachable dur-
ing the broadcast phase. It is worth remarking that each switch
needs to store the ports connecting it to its children. Indeed, the
leader host cannot just insert the addresses of the children of all
the switches in the packet because this would be linear in the
number of hosts participating in the reduction.

1 2 3

S0

H0

S1

H2

S2

H5

S0

H0

H2

S2

H5

S1

Children
[L]

S0

H0

Children
[L]

S1

H2

S2

H5

4

S0

Children
[L,R]

H0

S1

H2

S2

H5

Children
[L]

5 6 7

S0

H0

H2

S2

H5

S1

S0

H0

Children
[0]

S1

H2

S2

H5

8

S0

H0

S1

H2

S2

H5

S0

Children
[L,R]

H0

S1

H2

S2

H5

Children
[L]

Destination: S2
Children: [R]

Destination: S2
Children: [R]

Figure 5: Collision and tree restoration.

To solve this problem, we adopt a simple but effective so-
lution called tree restoration. After a conflict, the switch in-
serts its address in the packet alongside the identifier of the port
from which it received it. Then, it forwards the packet directly

5

to the leader host (the packet is marked and ignored by all the
other switches on the path). After the reduction, the leader host
knows the unreachable subtrees: i.e., it has a list of switches
and respective ports from which they received packets generat-
ing collisions. During the broadcast phase, the leader host uses
this information to send an additional packet to these switches,
allowing them to bootstrap a local broadcast, restoring the sub-
tree. Other than the reduced data, these packets also carry the
list of ports on which the switch must forward the data (e.g.,
encoded as a bitmap).

In our example, when the collision is detected (3), S2 for-
wards the packet to the leader host, together with its address and
the port number (R) from which the packet has been received.
After the reduction phase, the leader host H0 starts the broad-
cast as usual (5). The broadcast packet eventually reaches S2,
but it is not able to progress since S2 is missing information
about its subtree (6). The leader host also sends a “restora-
tion” packet to S2 (7), making it able to forward the data on
port R towards H5 (8).

This approach works even if, after some collisions, the en-
try becomes available and subsequent packets are successfully
stored. In that case, the switch stores identifiers of some chil-
dren in the block descriptor on the switch, and hence they will
be reached by the normal broadcast phase. Others, i.e., the
ones that generated conflicts, will be reached through the tree
restoration process.

Because of the extra network traffic generated after a col-
lision (e.g., restoration packets), this approach can lower the
throughput (i.e., the leader host receives more packets due to
missed aggregations). However, collisions only happen if a
switch receives multiple packets with different ids mapping to
the same descriptor entry in the same time window. If this per-
formance penalty is not acceptable, Canary can avoid collisions
entirely by setting a limit on the number of concurrent allre-
duces, and by statically mapping ids to descriptor array entries.

3.2.2. Switch Memory Occupancy Modelling
We now analyze how much switch memory an allreduce

can occupy. A block descriptor is allocated in a switch when
the first packet of that block is received and deallocated when
the fully aggregated data is received. For this reason, switches
at the bottom level of the tree keep descriptors allocated for the
longest time and, to estimate the maximum memory occupancy,
we model the memory occupancy of those switches.

We denote the network bandwidth with b, the network di-
ameter with d, the 1-hop delay with l, the timeout with t (i.e.,
how much time a switch waits before sending the partially ag-
gregated data to the next hop), and the time required to the
leader to aggregation its data with r. Then, the time between the
allocation and the deallocation of a descriptor can be measured
as 2d(l + t) + r. Each descriptor contains the aggregated data,
plus a few more bytes for storing the root address and other
information. Thus, we can approximate the size of a descrip-
tor with the MTU m. By using Little’s Law, if we assume to
send MTU-sized packets, we can estimate the number of bytes

occupied by descriptors as:

b
m

(2d(l + t) + r)m = b(2d(l + t) + r)

Recent networks have a diameter of up to five and a per-hop
latency of around 300 nanoseconds [22], and programmable
NICs can perform tasks similar to those performed by the leader
host in around one microsecond [50]. Thus, on a 100Gbps net-
work with a one-microsecond allreduce timeout, each allreduce
might store up to 175KiB in each switch crossed by its packets.

It is worth remarking that the memory occupancy is inde-
pendent of the actual size of the data to be reduced because Ca-
nary aggregates data block-by-block, and the bandwidth-delay
product bounds the number of in-flight blocks. Also, the occu-
pancy does not depend on the number of hosts participating in
the reduction. Indeed, each switch stores only one descriptor
for each block, independently of how many packets (one from
each child) are aggregated in that block.

3.3. Packet Loss and Fault Tolerance

Canary treats packet losses and switches failures in the same
way. Indeed, in both cases, the leader does not receive some
packets (if the loss/failure occurs in the reduce phase), or the
hosts do not receive the reduced data (if the loss/failure occurs
in the broadcast phase). Without loss of generality, we describe
how to manage packet losses since the same approach is also
used for managing switches failures.

To detect a loss, all the hosts (excluding the leader) set a
timeout for each packet right before transmitting it. When the
reduced data arrives, the host deletes the timer. If the time-
out expires, a retransmission request is issued. If the leader
receives a retransmission request, two situations might occur.
If the leader entirely reduced the data, the packet was lost dur-
ing the broadcast phase, and the reduced data is re-transmitted
to the host that issued the request. Otherwise, if the leader only
partially reduced the data, some packet was lost in the reduce
phase.

In this case, the leader does not know which packet was
lost. Indeed, to know which packets contributed to the partially
reduced data, each switch would need to keep a bitmap of all the
hosts that contributed to the data reduced so far, which would
be linear in the number of hosts participating in the reduction.
However, having this bitmap in the packet is infeasible because
allreduces might span thousands of hosts [1, 54], and existing
programmable switches can only process a few hundred bytes
per packet (Section 6). Accordingly, because the leader cannot
determine which packet should be re-transmitted, it broadcasts
a failure message. Upon the reception of this message, the hosts
re-issue the reduction of that packet with a different id (or they
can reduce that packet only by using a host-based reduction
algorithm). To avoid overloading the network with reduction
packets, the hosts fall back to a host-based reduction after a
given number of failed retransmissions.

It is worth remarking that when a host terminates the re-
duction, it cannot simply modify or deallocate the reduced data
because the other hosts might not have successfully terminated

6

the reduction yet. Accordingly, it must preserve the part of the
data for which it was the leader to re-transmit the packets in
case any retransmission request arrives. For small-size reduc-
tions, the leader can store a copy of the data and deallocate it
when it receives a fully reduced packet for a subsequent reduc-
tion. Indeed, the hosts can start the subsequent reduction only
if they have already completed the previous one. If there are
no subsequent reductions, an explicit completion notification
is required (for example, by issuing a barrier). Because pre-
serving the data between subsequent reductions could poten-
tially double the memory consumption, for large reductions the
hosts always explicitly notify the completion. The explicit no-
tification introduces a marginal latency overhead compared to
the allreduce and allows the data to be deallocated or modified
immediately after the notification, not requiring any additional
copy.

Although Canary can autonomously manage switch fail-
ures without re-issuing the entire allreduce operation, host fail-
ures must be managed at a higher layer (e.g., with checkpoint/re-
start solutions).

3.4. Multitenancy

The switch does not have any knowledge of the different ap-
plications or users running on the system and simply aggregates
together packets with the same id. To support multiple applica-
tions, each of them must generate unique ids. Thus, Canary ids
are built by concatenating an identifier of the application (e.g.,
generated by the workload manager) and an identifier that each
application increases for every subsequent packet.

It is worth remarking that having multiple concurrent allre-
duces does not necessarily increase the amount of data that a
switch needs to store. Indeed, a descriptor is allocated only on
the switches traversed by the packets belonging to the corre-
sponding block and strictly for the time needed to reduce that
block. In a nutshell, running multiple concurrent allreduces,
each on a few hosts (thus connected through a few switches),
might consume the same amount of resources of a single allre-
duce on a higher number of hosts (thus spanning over more
switches).

3.5. Summary

We now wrap up Canary design. First, each host splits the
data in multiple packets, each marked with a unique id. When a
switch receives a data packet, it maps the id to a specific entry
of the array containing the descriptor for that id. If the entry is
available, the switch stores in the table the data carried by the
packet, updates the list of children, starts a timer, and drops the
packet. If a descriptor with the same id is already present in
the entry, the switch accumulates the data, updates the list of
children, and drops the packet. If a descriptor with a different
id already occupies the entry, the switch inserts in the packet its
address and the identifier of the port from which it received the
packet, before forwarding it to the leader.

When the timer of a descriptor expires, the switch sends
to the next hop the data contained in the descriptor. The port is
selected based on the root address stored in the switch using any

available load balancing algorithm. If a packet arrives and the
timeout for that id already expired, the switch updates the list
of children and forwards the packet to the next hop. Eventually,
when the leader starts the broadcast phase, the switch receives
the fully reduced data.

If there is a descriptor for that id, the switch forwards the
packet to all its children and removes the descriptor from the
table. If the switch does not have a descriptor for that id (be-
cause it could not store it due to a collision), it drops the packet.
Later, it receives the data from the leader specifying the chil-
dren to which the packet should be forwarded.

At some point, all the data will reach the tree’s leaves. If a
packet is lost or a switch fails, some leaves send a retransmis-
sion request to the leader. When the leader receives a retrans-
mission request, it can either re-transmit the fully reduced data
or require that block to be reduced from scratch (if it did not
already entirely reduce the data).

4. Implementation

We implemented Canary using a state-of-the-art Intel Tofino
programmable switch. Although existing programmable switches
can process terabits of data per second (1.2 billion packets per
second for each pipeline), they limit the type of computation
they can perform on packets. These limitations drove some of
the main choices in our design. For example, having one of the
hosts acting as the reduction leader pushes some complexity to
the host and keeps the code executed by the switch as simple as
possible.

Programmable switches process packets through multiple
pipelines, each composed of multiple stages. In our implemen-
tation, we use the first stages to determine if the packet is a
reduce or a broadcast packet and check if the packet generates
any collision when accessing the descriptors table. We then use
subsequent stages to read/write data. Because the goal of Ca-
nary is to leverage the speed of such programmable devices, all
the data is managed in the data plane and stored into registers.
Content-addressable memory (CAM) [55] is usually available
but can only be updated from the control plane [56, 28]. We do
not use CAM for storing the data because interactions with the
control plane would significantly increase the latency [57].

4.1. Packet Format

Because we are using programmable switches, we define a
custom packet format for Canary packets. To reduce the packet
overhead, Canary sends packets directly on top of Ethernet.
However, any other encapsulation could be used, and Canary
packets could be sent on top of IP or UDP. A Canary packet is
composed of the following fields:

• Destination (4 bytes) IP address of the leader host. Canary
uses the same routing tables used for IP routing to determine
how to reach the destination.

• Id (4 bytes) Unique identifier of the packet.

• Counter (2 bytes) Number of reduced packets (Fig. 3).

7

• Hosts (2 bytes) Number of hosts participating in the reduc-
tion (Fig. 3).

• Children (4 bytes) When a switch cannot store a packet be-
cause of a collision, this field carries the identifier of the port
from which the packet was received (Section 3.2).

• Switch Address (2 bytes) When a switch cannot store a
packet because of a collision, this field carries the switch ad-
dress (Section 3.2).

• Bypass (1 bit) If set, the switch should not further process
the packet but only forward it to the next hop.

• Multicast (1 bit) If set, the packet must be multicast to the
children of the switch.

• Padding (6 bits) Used to pad the packet size to a multiple of
8 bits.

• Data (128 bytes) Data to be reduced.

4.2. Multicasting
Multicasts could, in principle, have an impact on the capac-

ity to run our allreduce algorithm at line rate. Indeed, if the
switch generates m packets for each packet it receives, it might
decrease the achievable bandwidth by a factor of m. However,
we observe that if a switch multicasts a packet on m ports (its
children), this is because it previously aggregated the data com-
ing from m ports. Accordingly, the switch forwards, on average,
one packet for each packet it receives.

The switch keeps a table associating to each port the cor-
responding one-hot encoding. Every time a packet is received,
the one-hot encoding of the input port is retrieved through a
TCAM (pre-configured in the control plane) and added to the
bitmap storing the children. Thus, when a packet needs to be
multicasted, the switch knows that it must send it to all the ports
set in the children bitmap.

Programmable switches require multicast groups to be pre-
configured by specifying the association between a group iden-
tifier and a list of ports on which the switch will send packets
directed to that group. In our case, the group identifier could
simply be the bitmap associated with the specific list of ports.
For example, let us suppose we have a switch with eight ports
and that we want to multicast on the ports [0,2,3,5]. The bi-
nary representation of this list is 00101101. So we would have
to set up a rule such as 00101101 -> [0,2,3,5]. However,
Canary uses adaptive routing, and the switches multicast the
packets to the same ports from which they have been received,
which are not known a priori. Accordingly, we should store all
the possible combinations of ports, which is exponential in the
number of ports.

Because this requires too many resources, to reduce the
storage requirements, we divide the children bitmap in shards.
For example, the children bitmap 00101101 can be divided into
two shards of 4 bits each. We prepend to each shard its index
so that the two shards become 1 0010 and 0 1101. We then
store the association between all the possible shard values (that,
in this case, would be 2 · 24) and the corresponding list of ports.

In our example, we would have the rules 10010 -> [5] and
01101 -> [0,2,3]. This technique reduces the number of
multicast groups to store in the switch tables from 2p, to 2

p
s · s,

where p is the number of ports, and s is the number of shards.
For example, on a 64 port switch with four shards, this requires
using 256 thousand entries, which is far within reach of current
programmable switches [58], as we also show in Section 5.1.

4.3. Timeouts

As described in Section 3.1.1, Canary relies on timeouts
to avoid statically setting up the reduction tree. In our Ca-
nary implementation, every time the switch receives a reduc-
tion id for the first time, it stores in the descriptor the current
timestamp (alongside the data to reduce and the other informa-
tion). Some programmable switches [28] provide one or multi-
ple packet generators that can generate packets at a predefined
rate and with predefined content. For example, we can set up
the packet generators so to generate clock packets. Every time
one of these packets is received, the switch can check an en-
try of the table and, if expired, send the content in that entry
to its parent. Alternatively, Canary could be implemented on
programmable switches that support timer-based events [59].

5. Evaluation

In this section, we evaluate the performance of Canary, first
by analyzing its performance on a Tofino switch (Section 5.1),
and then by simulating it on a large network (Section 5.2) con-
necting 1024 hosts through 64 switches.

5.1. Single switch implementation

To verify the feasibility of our design, we implemented and
validated our P4 Canary prototype on a Tofino Wedge 100BF-
32X switch [28] with 32 100Gbps ports. This allowed us to
understand existing switches’ limitations and drive our design
choices. We were able to allocate enough registers to allocate
up to 32K descriptors, allowing us to run at least 25 concurrent
allreduces of different tenants or applications (Section 3.2.2).
Our P4 Canary implementation only uses 14.38% of the switch
SRAM. However, Canary uses most of the Arithmetic Logic
Units (ALU), up to 81.25% of those available on the switch, to
aggregate the elements carried in the packets. Canary leaves
enough resources available for running it alongside traffic load
balancing algorithms such as flowlet switching [37] that, on the
same switch, uses 2.26% of the available SRAM and 0.04% of
the ALUs [60].

0 20 40 60 80 100
Goodput (Gbps)

Tofino

SST Simulator

Figure 6: Goodput (Gbps) of our P4 Canary prototype and of our implemen-
tation in the SST simulator, when sending packets with 128 bytes of useful
payload.

8

To measure the goodput of our P4 prototype implementa-
tion, we connected two hosts equipped with 100 Gbps Mel-
lanox ConnectX-5 NICs to the Tofino switch. We emulate a
leaf switch that receives the data to be reduced from the two
hosts, aggregates it, and forwards the aggregated result to the
next switch in the reduction tree. The two hosts inject the data
using Moongen [61], a DPDK [53] wrapper.

We benchmark a 4MiB allreduce and report the goodput
in Figure 6. We also report the goodput achieved by our sim-
ulation infrastructure (that we describe in Section 5.2) in the
same setup. It is worth remarking that, due to the limited num-
ber of match-action tables available in existing programmable
switches, we can store up to 32 4-bytes elements. Accordingly,
each packet contains 128 bytes of useful payload and 57 bytes
of headers (19 bytes of Canary header, 14 bytes of Ethernet
header, and 24 bytes of framing overhead).

Programmable switches are composed of multiple process-
ing pipelines, and some existing P4 prototypes [15, 4] partially
overcome this limitation by striping the packet across pipelines.
For example, the first pipeline would store the first 32 elements,
then recirculate the packet to the second pipeline, which would
store the following 32 elements, and so on. In this way it is
possible to have up to 128 [15] or 256 elements [4] per packet.
However, to have enough recirculation bandwidth and avoid
packet drops, some switch ports must be dedicated to packets
recirculations only.

Additionally, it is reasonable to assume that the number of
match-action tables in each pipeline stage will increase with
the next generations of programmable switches, thus allowing
processing more elements per packet. For example, some pro-
grammable switches already provide the possibility to process
up to 48 elements per pipeline [60]. For these reasons, in the
following, we run simulations with 256 elements per packet for
all the in-network algorithms.

5.2. Large network simulations
To evaluate Canary performance at scale, we modified the

SST simulator [62, 63] so that switches can modify the packets
they receive before forwarding them. We build in the simulator
a two-level fat-tree network [27]. The network comprises 32
switches at the bottom level, each with 64 ports (32 connected
to the hosts and 32 to the switches at the upper level). The
top level of the fat-tree comprises 32 switches, each with 32
ports (one port connected to each of the switches at the bottom
level). Both the hosts and the switches have 100 Gbps network
interfaces.

We calibrated the simulator so that hosts can inject packets
into the network at line rate and so that the switches can aggre-
gate the data at the same speed as our Tofino prototype (as we
show in Figure 6). The simulated network uses up/down rout-
ing. When packets flow from hosts to upper levels of the fat-
tree, each switch can select one among multiple up ports. By
default, each switch sends packets on a default up port (selected
depending on the packet destination). If the output port buffer
has an occupancy higher than 50% of its capacity, the switch
forwards the packet on the up port with the smallest number of
enqueued bytes.

To compare our solution with the state-of-the-art, we imple-
mented in the simulator the following allreduce algorithms:

• Ring The bandwidth-optimal host-based ring allreduce al-
gorithm [17]. This solution does not rely on any in-network
compute capability.

• In-Network, N static trees An in-network algorithm using
static reduction trees. We consider either the case when a
single tree is used, similar to what is done by SHARP [16,
19], SwitchML [4], and ATP [15], and also the case where N
trees are used and each block is sent on a different tree in a
round-robin way, similar to what done by PANAMA [18].

• Canary The in-network algorithm we propose in this work,
which dynamically builds reduction trees.

To analyze the impact of congestion on the allreduce perfor-
mance, we split the hosts into two sets. While some hosts run
the allreduce, the remaining hosts generate network congestion
by executing a random uniform injection traffic pattern. In this
pattern, each host sends a message to a randomly selected host
and receives a message from another randomly selected host.
Each host changes its random peer throughout the execution to
assess the ability of Canary to react to dynamically changing
congestion patterns. We execute each test five times, each time
randomly allocating the hosts executing the allreduce and those
generating the congestion. When using static reduction trees,
we also randomly pick the roots of those trees.

Without
Congestion

With
Congestion

0

20

40

60

80

Go
od

pu
t (

Gb
/s

)

In-Network, 1 ST
In-Network, 4 ST
In-Network, 8 ST

In-Network, 16 ST
Canary

(a) Goodput (Gbps).

W
ith

ou
t

Co
ng

es
tio

n

In-Network, 1 ST
In-Network, 4 ST

Canary

0 20 40 60 80 100
Utilization (%)

W
ith

Co
ng

es
tio

n

(b) Links utilization (%).

Figure 7: Goodput and links utilization when 512 hosts execute an allreduce
and 512 hosts generate congestion. ST: Static Tree(s).

5.2.1. Comparison with the static trees approach
First, we report in Figure 7a the comparison between Ca-

nary and the in-network algorithm using one or multiple static
trees. We allocated 512 hosts to the allreduce and used the
remaining 512 hosts to generate congestion. We report the
bandwidth with and without congestion for a 4MiB allreduce.
Whereas in the absence of congestion, the performance of all
the approaches is comparable, when introducing congestion Ca-
nary performs significantly better than the solutions using stat-
ically configured reduction trees. Indeed, whereas solutions us-
ing static trees are severely affected by congestion, Canary does
not experience any performance degradation. For this reason,
we observe performance improvements up to 2x compared to
solutions using a single reduction tree and up to 40% compared

9

Without
Congestion

With
Congestion

0

20

40

60

80

Go
od

pu
t (

Gb
/s

)

Allreduce Hosts = 5%

Without
Congestion

With
Congestion

0

20

40

60

80

Allreduce Hosts = 25%

Without
Congestion

With
Congestion

0

20

40

60

80

Allreduce Hosts = 50%

Without
Congestion

With
Congestion

0

20

40

60

80

Allreduce Hosts = 75%
Ring In-Network, 1 Static Tree In-Network, 4 Static Trees Canary

Figure 8: 4MiB allreduce goodput (the higher the better) for different hosts count. The hosts not performing allreduce generate random uniform traffic to introduce
congestion.

to those using multiple trees. Moreover, we also observe that
using more than four trees for solutions relying on static trees
leads only to a marginal performance improvement. For these
reasons, in the subsequent analysis, we consider a solution us-
ing four static trees, as in the original PANAMA paper [18].

We also report in Figure 7b the distribution of links utiliza-
tion (each sample is a network link). For the sake of readability,
we only report those of Canary, one static tree, and four static
trees. We observe that when there is no congestion, there are no
significant differences between the three approaches, and each
link is either idle (0% utilization) or fully utilized (around 90%
utilization). However, when we introduce congestion, we ob-
serve that Canary is characterized by fewer idle links and better
distributes the traffic over the available links.

At first sight, it might seem like the in-network solution with
one static tree does not fully utilize any network link because
there are no humps around 80-100% utilization. However, by
analyzing the data more in detail, we found two links with uti-
lization greater than 80%. Because these two links are shared
between the in-network allreduce and the application that gen-
erates congestion, this is enough to slow down the in-network
allreduce by more than 50% (Figure 7a) and to reduce the over-
all network utilization. Indeed, in the presence of congestion,
we observed an average network utilization (computed as the
average of all the links utilization) of 40.2% for Canary, 29.5%
for the in-network allreduce with four trees, and 20.9% for the
one with one tree.

5.2.2. Goodput for different congestion intensity
We now analyze the performance of Canary when chang-

ing the number of hosts generating congestion by comparing
it to the host-based bandwidth-optimal ring allreduce and the
in-network allreduce using static trees. We report the results
of this analysis in Figure 8. We ran a 4MiB allreduce, and we
increase the number of hosts executing the allreduce from 5%
to 75% of the 1024 hosts available in the system. The hosts
not executing the allreduce generate congestion through a ran-
dom uniform communication pattern. First, we observe that
Canary consistently improves performance compared to other
solutions.

When using only 5% of the hosts for the allreduce (thus
using 95% of the hosts to generate congestion), Canary perfor-
mance only decreases by 20%. In contrast, the performance of

the in-network static solutions decreases by 66% when using a
single tree and by 47% when using four trees. When increas-
ing the number of hosts executing the allreduce (thus decreas-
ing congestion), the performance gap shrinks, but Canary still
provides 2x improvement compared to the single static tree so-
lution, and 23% improvement compared to the solution using
four reduction trees. Eventually, we observe that in some cases,
the congestion decreases the performance of the single tree so-
lution so much that it does not provide any performance advan-
tage compared to the host-based ring allreduce, as also outlined
in other recent works [18].

5.2.3. Runtime for different data sizes
We now analyze the allreduce runtime for different data

sizes. We allocate 20% of the hosts to the allreduce, whereas
the remaining 80% generates congestion. We report in Fig-
ure 9 the runtime (in microseconds) with and without conges-
tion. We observe that for small allreduces, Canary is charac-
terized by a higher runtime because the switch only forwards
(aggregated) packets after the timeout period expires. When
increasing the size of the data exchanged by the allreduce, the
performance advantage of Canary increases because the run-
time of large allreduces is dominated by the bandwidth, and the
extra latency introduced by the timeout mechanism becomes
negligible. We also observe that 1KiB and 256KiB ring allre-
duces have the same runtime. Indeed, the ring allreduce is
the host-based bandwidth-optimal allreduce algorithm, but, for
small messages, its runtime is dominated by latency and setup
of communication phases [17, 5].

5.2.4. Multiple concurrent allreduces
Using statically configured trees also significantly decreases

the aggregation bandwidth when multiple tenants (or multiple
applications) concurrently run allreduce operations (e.g., mul-
tiple training jobs). Therefore, we equally partitioned the sys-
tem between multiple co-running allreduce operations to ana-
lyze this effect. Furthermore, because most existing in-network
allreduce algorithms statically partition the switch resources across
the tenants [4, 34, 16], to have a fair comparison, we adopt a
similar approach also in Canary.

We report in Figure 10a the average goodput across all the
concurrent allreduce operations. First, we observe that when

10

Without
Congestion

With
Congestion

0

10

Without
Congestion

With
Congestion

0

10

Without
Congestion

With
Congestion

0

50

Without
Congestion

With
Congestion

0

250

500

750

1000

Allreduce Size = 4MiB

100

200

300 Allreduce Size = 1KiB

100

200

300 Allreduce Size = 16KiB

100

200

300 Allreduce Size = 256KiB
Ring In-Network, 1 Static Tree In-Network, 4 Static Trees Canary

Ru
nt

im
e

(u
s)

Figure 9: Allreduce runtime (the lower the better) for different message size, when 20% of the hosts are allocated to the allreduce, and 80% to an application
generating random uniform traffic.

increasing the number of concurrent allreduces (thus decreas-
ing the number of hosts allocated to each allreduce), the aver-
age goodput of the ring allreduce increases. This is a known
effect [17] because the performance of the ring allreduce in-
creases when decreasing the number of hosts. However, the per-
formance drops when running more than ten concurrent allre-
duces due to the increased congestion. We also observe the
performance of in-network static allreduce algorithms drops by
40% when increasing the number of concurrent allreduce op-
erations due to congestion. On the contrary, Canary is almost
unaffected and allows up to 32 concurrent allreduces at 80 Gbps
each.

1 2 4 10 20 32
Concurrent Allreduces

40

60

80

Go
od

pu
t (

Gb
/s

)

Ring
In-Network, 1 ST

In-Network, 4 ST
Canary

(a) Goodput (Gbps).

0 20 40 60 80 100
Utilization (%)

In-Network, 1 ST
In-Network, 4 ST

Canary

(b) Links utilization (%).

Figure 10: Average goodput of multiple concurrent 4MiB allreduces (left),
and link utilization when running 20 concurrent allreduces (right). ST: Static
Tree(s).

By analyzing the distribution of the links utilization in Fig-
ure 10b, we observe that Canary is characterized by the lowest
number of idle links. We also observe that using four static trees
improves the links utilization compared to using only one static
tree. However, as shown in Figure 10a, this is still not sufficient
to avoid congestion because multiple allreduces concurrently
use some links.

We observed an average network utilization of 67.2% for
Canary, 62.9% for the static in-network allreduce with four
trees, and 21.8% for the one with one tree. Although Canary
and the solution using four trees lead to a similar average net-
work utilization, Canary performs better because it distributes
the traffic more evenly across the network (e.g., it does not have
any link in the 70-90% range of utilization).

5.2.5. Impact of Timeout and Noise
One of the key points of Canary is the use of timeouts to

decide when a reduction block has been fully aggregated and
can be sent to the next hop in the reduction tree. As described in
Section 3.1.1, if the timeout is too short, or if a packet is delayed
for any reason (e.g. OS noise [64]), the straggler packet is sent
to the next hop right after it is received. Although this guaran-
tees that all the packets are eventually successfully aggregated,
it might introduce some performance penalty, because a switch
now sends more packets than the optimal.

To analyze this scenario, we execute a 4MiB allreduce on
512 hosts, with and without congestion, by comparing it with
the in-network allreduce using four static trees and by analyzing
the performance for different values of the timeout. Also, ev-
ery time a host sends a packet, it has a given probability (noise
probability) of delaying the transmission by 1 microsecond. We
report the results of this analysis in Figure 11, by showing the
runtime when changing the noise probability from 0.01% to
10% (i.e., each host on average delays 10% of the packets it
sends by 1 microsecond).

0.01 0.1 1.0 10.0
Noise Probability (%)

40

60

80

Go
od

pu
t (

Gb
/s

)

Without Congestion

0.01 0.1 1.0 10.0
Noise Probability (%)

Go
od

pu
t (

Gb
/s

)

With Congestion

In-Network, 4 Static Trees
Canary (Timeout: 1 us)

Canary (Timeout: 2 us)
Canary (Timeout: 3 us)

Figure 11: Goodput of a 4MiB allreduce executed on 512 hosts, in a scenario
where before sending a packet a host might add a delay of 1us with a given
probability.

When there is no congestion on the network, we observe
that Canary is characterized by a lower goodput, as also ob-
served in the previous experiments. Because in this experiment
we randomly delay packets by one microsecond, the scenario
with a one-microsecond timeout generates several stragglers,
decreasing the Canary goodput. This effect is less visible for
larger timeouts, which can absorb differences in packet delays.

We also highlight how the performance does not increase
nor decrease monotonically with the timeout value. Indeed, a
long timeout unnecessarily increases packet latency, whereas a

11

short timeout generates stragglers. However, even if we have a
3x difference between the timeout values, we observe at most
a 30% difference in the performance. To further mitigate the
timeout impact, a possible future extension would be to dynam-
ically select the timeout based on the current network condi-
tions.

Last, when introducing congestion, Canary instead outper-
forms the static in-network allreduce regardless of the noise
probability and timeout values. Indeed, even if stragglers are
generated, their impact on the performance is compensated by
the fact packets are forwarded on less-congested paths.

6. Discussion

This section discusses some of the limitations of existing
programmable switches and their impact on Canary.

Collisions. If two packets with two different ids map to the
same table entry, Canary forwards the second packet directly to
the leader host, generating extra network traffic and potentially
reducing the performance (Section 3.2). For this reason, colli-
sions should happen as rarely as possible. To reduce the number
of collisions, in principle Canary could use slightly more so-
phisticated schemes like Cuckoo hashing [65] or double hash-
ing [66]. However, due to the lack of iterative constructs and
limited resources, this is not possible on existing programmable
switches. As an alternative, the administrator can limit the num-
ber of concurrent allreduces and statically partition the table, as
done in most in-network allreduce algorithms.

Packet size. Most existing programmable switches can only
process a limited number of data elements per packet, based on
the number of physical resources available. Although, as dis-
cussed in Section 5.1, this number can be increased by exploit-
ing recirculations, it also requires dedicating most of the switch
ports to packet recirculations [4, 15]. As an alternative, Canary
could be implemented on different programmable switch archi-
tectures that do not have limitations on the number of elements
that can be processed per packet [34].

Floating-point arithmetic. Most programmable switches do not
provide floating-point units [67] and, for this reason, most in-
network reduction solutions targeting programmable switches
assume that the values to be reduced are converted to fixed-
point arithmetic before being transmitted over the network [15,
4, 32]. It has been shown that such techniques do not signif-
icantly impact the convergence of deep learning training, and
thus they could seamlessly be used with Canary.

Support for other collectives. Although we focused on the allre-
duce, a similar approach could be used for other collective op-
erations. For example, a reduce can be easily implemented by
selecting as leader node the destination of the reduce, and by
skipping the broadcast phase. Similarly, a barrier can be im-
plemented by having a 0-bytes allreduce, and a broadcast by
having the node acting as the source of the broadcast sending
data to the leader host, thus skipping the data aggregation phase.

Leader Failure. Failures of the hosts acting as leaders can be
managed with checkpoint/re-start solutions. Indeed, the leader
is one of the hosts participating in the allreduce and, if it fails,
its data is lost and cannot be recovered as it happens in the
case of a switch/link failure. This, however, is also true for
any allreduce algorithm (both host-based or in-network) in case
of the failure of one of the hosts involved in the reduction. Al-
ternatively, the leader could run on a server not used by any
host (e.g., in the SDN controller(s)). However, this would pose
scalability challenges in case of multiple in-network allreduce
issued by different jobs, and would not allow load balancing
between different leaders (see Section 3.1.4).

Fragmentation. We assume that application-level messages are
split into IP packets (see Section 3.1.3), each with its own Ca-
nary header. We enforce packets (including Canary header) to
be no larger than MTU to avoid fragmentation, which would
significantly complicate the design.

Other Topologies. For the sake of simplicity, we described and
evaluated our algorithm on fat tree topologies. However, a sim-
ilar approach could be used on other topologies, since an aggre-
gation tree is naturally formed when sending packets from the
hosts to the root.

Retransmission Delays. If we assume a retransmission time-
out of 2 · RTT (where RTT is the Round Trip Time between
a host and the leader), in the worst case a new reduction for a
given block will be re-issued after 3 ·RTT . Indeed, a host needs
2·RTT before issuing a retransmission request. The retransmis-
sion request arrives at the leader after RTT/2, and broadcasts to
all the hosts a failure message for that block, that the hosts re-
ceive after RTT/2.

7. Conclusion

In this work, we designed, implemented, and evaluated Ca-
nary, the first congestion-aware in-network allreduce algorithm.
We first shown the impact that network congestion can have on
the performance of in-network allreduce algorithm, up to the
point where they exhibit lower performance than host-based
allreduce. For this reason, by relying on timeouts, Canary can
dynamically route packets to avoid congested links, aggregat-
ing them in a best-effort fashion.

We carefully partitioned Canary functionalities between hosts
and switches, and we described a prototype P4 implementation,
that we evaluated on a Tofino switch. We then simulated our
solution on a 1024 nodes network with 64 switches, showing
improvements up to 2x compared to in-network solutions us-
ing a single reduction tree and up to 47% compared to solutions
using multiple trees. Furthermore, we have shown that these re-
sults are consistent across different congestion intensities, prov-
ing that Canary is an effective solution in avoiding congestion
when running in-network allreduces.

12

Acknowledgements

We would like to thank Vladimir Gurevich for the helpful
comments and feedback. This work has been partially funded
by the European Union’s Horizon Europe programme project
RED-SEA (grant no. 955776). Daniele De Sensi was sup-
ported by an ETH Postdoctoral Fellowship (19-2 FEL-50), and
by Sapienza University under the SEED-2022 funding scheme.

References

[1] T. Ben-Nun, T. Hoefler, Demystifying parallel and distributed deep learn-
ing: An in-depth concurrency analysis, ACM Comput. Surv. 52 (4) (Aug.
2019). doi:10.1145/3320060.
URL https://doi.org/10.1145/3320060

[2] S. Gottlieb, W. Liu, W. Toussaint, R. Renken, R. Sugar, Hybrid-
molecular-dynamics algorithms for the numerical simulation of quantum
chromodynamics, Physical review D: Particles and fields 35 (8) (1987)
2531–2542. doi:10.1103/PhysRevD.35.2531.

[3] M. Frigo, S. G. Johnson, The design and implementation
of fftw3, Proceedings of the IEEE 93 (2) (2005) 216–231.
doi:10.1109/JPROC.2004.840301.

[4] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. R. K. Ports, P. Richtárik, Scaling Distributed
Machine Learning with In-Network Aggregation, in: Proceedings of the
18th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 21), 2021.

[5] B. Klenk, N. Jiang, G. Thorson, L. Dennison, An In-Network Architec-
ture for Accelerating Shared-Memory Multiprocessor Collectives (2020).
doi:10.1109/ISCA45697.2020.00085.

[6] Nvidia, NVIDIA Ampere Architecture In-Depth, https://developer.
nvidia.com/blog/nvidia-ampere-architecture-in-depth/.

[7] I. T. Association, InfiniBand Roadmap – Charting Speeds for Future
Needs, https://www.infinibandta.org/infiniband-roadmap-

charting-speeds-for-future-needs/.
[8] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu, 1-bit stochastic gradient descent

and application to data-parallel distributed training of speech dnns, in:
Interspeech 2014, interspeech 2014 Edition, 2014.

[9] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, T. Hoe-
fler, Sparcml: High-performance sparse communication for machine
learning, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’19,
Association for Computing Machinery, New York, NY, USA, 2019.
doi:10.1145/3295500.3356222.
URL https://doi.org/10.1145/3295500.3356222

[10] T. Hoefler, A. Lumsdaine, W. Rehm, Implementation and performance
analysis of non-blocking collective operations for mpi, in: Proceed-
ings of the 2007 ACM/IEEE Conference on Supercomputing, SC ’07,
Association for Computing Machinery, New York, NY, USA, 2007.
doi:10.1145/1362622.1362692.
URL https://doi.org/10.1145/1362622.1362692

[11] X. Lian, W. Zhang, C. Zhang, J. Liu, Asynchronous decentralized paral-
lel stochastic gradient descent, in: J. G. Dy, A. Krause (Eds.), Proceed-
ings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Vol. 80
of Proceedings of Machine Learning Research, PMLR, 2018, pp. 3049–
3058.
URL http://proceedings.mlr.press/v80/lian18a.html

[12] S. Li, T. Ben-Nun, S. D. Girolamo, D. Alistarh, T. Hoefler, Taming un-
balanced training workloads in deep learning with partial collective op-
erations, in: Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’20, Associa-
tion for Computing Machinery, New York, NY, USA, 2020, p. 45–61.
doi:10.1145/3332466.3374528.
URL https://doi.org/10.1145/3332466.3374528

[13] J. Geng, D. Li, Y. Cheng, S. Wang, J. Li, Hips: Hierarchical parameter
synchronization in large-scale distributed machine learning, in: Proceed-
ings of the 2018 Workshop on Network Meets AI & ML, NetAI’18, As-
sociation for Computing Machinery, New York, NY, USA, 2018, p. 1–7.

doi:10.1145/3229543.3229544.
URL https://doi.org/10.1145/3229543.3229544

[14] S. Wang, J. Geng, D. Li, Impact of synchronization topology
on dml performance: Both logical topology and physical topol-
ogy, IEEE/ACM Transactions on Networking 30 (2) (2022) 572–585.
doi:10.1109/TNET.2021.3117042.

[15] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, M. Swift, ATP:
In-network aggregation for multi-tenant learning, in: 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), USENIX Association, 2021, pp. 741–761.
URL https://www.usenix.org/conference/nsdi21/

presentation/lao

[16] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir, L. Levi,
A. Margolin, T. Ronen, A. Shpiner, O. Wertheim, E. Zahavi, Scalable
Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture
for Efficient Data Reduction, in: Proceedings of COM-HPC 2016: 1st
Workshop on Optimization of Communication in HPC Runtime Sys-
tems - Held in conjunction with SC 2016: The International Conference
for High Performance Computing, Networking, Storage and Analysis,
Institute of Electrical and Electronics Engineers Inc., 2017, pp. 1–10.
doi:10.1109/COMHPC.2016.006.

[17] P. Patarasuk, X. Yuan, Bandwidth optimal all-reduce algorithms for
clusters of workstations, Journal of Parallel and Distributed Computing
69 (2) (2009) 117 – 124. doi:https://doi.org/10.1016/j.jpdc.2008.09.002.
URL http://www.sciencedirect.com/science/article/pii/

S0743731508001767

[18] N. Gebara, P. Costa, M. Ghobadi, Panama: In-network aggregation for
shared machine learning clusters, in: Conference on Machine Learning
and Systems (MLSys) 2021, 2021.
URL https://www.microsoft.com/en-us/research/

publication/panama-in-network-aggregation-for-shared-

machine-learning-clusters/

[19] R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer, D. Cho,
G. Elias, D. Klein, J. Ladd, O. Maor, A. Marelli, V. Petrov, E. Romlet,
Y. Qin, I. Zemah, Scalable Hierarchical Aggregation and Reduction Pro-
tocol (SHARP)TM Streaming-Aggregation Hardware Design and Evalu-
ation, in: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Vol. 12151 LNCS, Springer, 2020, pp. 41–59.
URL \url{https://doi.org/10.1007/978-3-030-50743-5_3}

[20] D. De Sensi, T. De Matteis, K. Taranov, S. Di Girolamo, T. Rahn, T. Hoe-
fler, Noise in the clouds: Influence of network performance variability on
application scalability, Proc. ACM Meas. Anal. Comput. Syst. 6 (3) (dec
2022). doi:10.1145/3570609.
URL https://doi.org/10.1145/3570609

[21] S. Jha, A. Patke, J. Brandt, A. Gentile, B. Lim, M. Showerman, G. Bauer,
L. Kaplan, Z. Kalbarczyk, W. Kramer, R. Iyer, Measuring congestion
in high-performance datacenter interconnects, in: 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20),
USENIX Association, Santa Clara, CA, 2020, pp. 37–57.
URL https://www.usenix.org/conference/nsdi20/

presentation/jha

[22] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, T. Hoefler,
An in-depth analysis of the slingshot interconnect, in: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’20, IEEE Press, 2020.

[23] D. De Sensi, S. Di Girolamo, T. Hoefler, Mitigating network noise on
dragonfly networks through application-aware routing, in: Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’19, Association for Computing Ma-
chinery, New York, NY, USA, 2019. doi:10.1145/3295500.3356196.
URL https://doi.org/10.1145/3295500.3356196

[24] T. Groves, Y. Gu, N. J. Wright, Understanding performance vari-
ability on the aries dragonfly network, in: 2017 IEEE International
Conference on Cluster Computing (CLUSTER), 2017, pp. 809–813.
doi:10.1109/CLUSTER.2017.76.

[25] Nvidia, Mellanox Onyx User Manual, https://docs.nvidia.com/

networking/pages/viewpage.action?pageId=15046723.
[26] Nvidia, End-to-End QoS Configuration for Mellanox Switches (SwitchX)

and Adapters, https://enterprise-support.nvidia.com/s/

13

article/end-to-end-qos-configuration-for-mellanox-

switches--switchx--and-adapters.
[27] C. E. Leiserson, Fat-trees: Universal networks for hardware-efficient su-

percomputing, IEEE Transactions on Computers C-34 (10) (1985) 892–
901. doi:10.1109/TC.1985.6312192.

[28] A. Agrawal, C. Kim, Intel Tofino2 – A 12.9Tbps P4-Programmable
Ethernet Switch, in: 2020 IEEE Hot Chips 32 Symposium (HCS),
IEEE Computer Society, Los Alamitos, CA, USA, 2020, pp. 1–32.
doi:10.1109/HCS49909.2020.9220636.
URL https://doi.ieeecomputersociety.org/10.1109/

HCS49909.2020.9220636

[29] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, R. Rajamony, The PERCS
high-performance interconnect, in: Proceedings - 18th IEEE Sympo-
sium on High Performance Interconnects, HOTI 2010, 2010, pp. 75–82.
doi:10.1109/HOTI.2010.16.

[30] B. Alverson, E. Froese, L. Kaplan, D. Roweth, Cray® XC™ Series Net-
work, Tech. rep. (2012).

[31] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu,
S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, T. Inoue, The tofu inter-
connect d, in: 2018 IEEE International Conference on Cluster Computing
(CLUSTER), 2018, pp. 646–654. doi:10.1109/CLUSTER.2018.00090.

[32] J. Fei, C.-Y. Ho, A. N. Sahu, M. Canini, A. Sapio, Efficient Sparse Col-
lective Communication and its application to Accelerate Distributed Deep
Learning, in: Proceedings of SIGCOMM’21, 2021.

[33] K. Lakhotia, F. Petrini, R. Kannan, V. Prasanna, In network reductions on
a multi dimensional HyperX, in: IEEE 28th Annual Symposium on High-
Performance Interconnects, HOTI 2021, August 18-20, 2021, 2021.

[34] D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, T. Hoefler, Flare: Flexi-
ble in-network allreduce, in: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC
’21, 2021.

[35] M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Henriksson,
S. Di Girolamo, A. Singla, T. Hoefler, FatPaths: Routing in Supercomput-
ers and Data Centers When Shortest Paths Fall Short, IEEE Press, 2020.

[36] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, RFC 2992
(Nov. 2009).
URL https://www.ietf.org/rfc/rfc2992.txt

[37] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, G. Varghese,
Conga: Distributed congestion-aware load balancing for datacenters, in:
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, Association for Computing Machinery, New York, NY, USA, 2014,
p. 503–514. doi:10.1145/2619239.2626316.
URL https://doi.org/10.1145/2619239.2626316

[38] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, T. Edsall, Let it flow: Resilient
asymmetric load balancing with flowlet switching, in: 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), USENIX Association, Boston, MA, 2017, pp. 407–420.
URL https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/vanini

[39] L. G. Valiant, A scheme for fast parallel communica-
tion, SIAM Journal on Computing 11 (2) (1982) 350–361.
arXiv:https://doi.org/10.1137/0211027, doi:10.1137/0211027.
URL https://doi.org/10.1137/0211027

[40] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, A. Vahdat,
Jupiter rising: A decade of clos topologies and centralized control in
google’s datacenter network, SIGCOMM Comput. Commun. Rev. 45 (4)
(2015) 183–197. doi:10.1145/2829988.2787508.
URL https://doi.org/10.1145/2829988.2787508

[41] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, A. Firoozshahian, Drill:
Micro load balancing for low-latency data center networks, in: Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, Association for Computing Machinery,
New York, NY, USA, 2017, p. 225–238. doi:10.1145/3098822.3098839.
URL https://doi.org/10.1145/3098822.3098839

[42] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, D. Maltz, Per-packet load-balanced, low-latency routing for
clos-based data center networks, in: Proceedings of the Ninth ACM

Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, Association for Computing Machinery, New York, NY,
USA, 2013, p. 49–60. doi:10.1145/2535372.2535375.
URL https://doi.org/10.1145/2535372.2535375

[43] L. Shalev, H. Ayoub, N. Bshara, E. Sabbag, A cloud-optimized transport
protocol for elastic and scalable hpc, IEEE Micro 40 (6) (2020) 67–73.
doi:10.1109/MM.2020.3016891.

[44] Microsoft, Scaling HPC applications – Adaptive Routing,
https://docs.microsoft.com/en-us/azure/virtual-

machines/workloads/hpc/compiling-scaling-applications\

#adaptive-routing.
[45] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, P. Kalnis, In-network

computation is a dumb idea whose time has come, in: Proceedings of the
16th ACM Workshop on Hot Topics in Networks, HotNets-XVI, Associ-
ation for Computing Machinery, New York, NY, USA, 2017, p. 150–156.
doi:10.1145/3152434.3152461.
URL https://doi.org/10.1145/3152434.3152461

[46] J. Meza, T. Xu, K. Veeraraghavan, O. Mutlu, A large scale study of data
center network reliability, in: Proceedings of the Internet Measurement
Conference 2018, IMC ’18, Association for Computing Machinery, New
York, NY, USA, 2018, p. 393–407. doi:10.1145/3278532.3278566.
URL https://doi.org/10.1145/3278532.3278566

[47] R. Singh, M. Mukhtar, A. Krishna, A. Parkhi, J. Padhye, D. Maltz, Surviv-
ing switch failures in cloud datacenters, SIGCOMM Comput. Commun.
Rev. 51 (2) (2021) 2–9. doi:10.1145/3464994.3464996.
URL https://doi.org/10.1145/3464994.3464996

[48] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, R. Agarwal, Un-
derstanding host network stack overheads, in: Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, Associa-
tion for Computing Machinery, New York, NY, USA, 2021, p. 65–77.
doi:10.1145/3452296.3472888.
URL https://doi.org/10.1145/3452296.3472888

[49] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, D. Went-
zlaff, Enabling programmable transport protocols in high-speed nics,
in: 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), USENIX Association, Santa Clara, CA,
2020, pp. 93–109.
URL https://www.usenix.org/conference/nsdi20/

presentation/arashloo

[50] S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider, J. Beranek,
L. Benini, T. Hoefler, A RISC-V in-network accelerator for flexible high-
performance low-power packet processing, in: 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), 2021.

[51] W. Schonbein, R. E. Grant, M. G. F. Dosanjh, D. Arnold, Inca: In-network
compute assistance, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’19, Association for Computing Machinery, New York, NY, USA, 2019.
doi:10.1145/3295500.3356153.
URL https://doi.org/10.1145/3295500.3356153

[52] S. D. Girolamo, K. Taranov, A. Kurth, M. Schaffner, T. Schneider,
J. Beránek, M. Besta, L. Benini, D. Roweth, T. Hoefler, Network-
Accelerated Non-Contiguous Memory Transfers, in: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC19), 2019.

[53] L. Foundation, DPDK: Data Plane Development Kit, https://www.

dpdk.org/.
[54] S. Chunduri, S. Parker, P. Balaji, K. Harms, K. Kumaran, Charac-

terization of MPI usage on a production supercomputer, in: Proceed-
ings of the International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis, SC ’18, IEEE Press, 2018.
doi:10.1109/SC.2018.00033.
URL https://doi.org/10.1109/SC.2018.00033

[55] K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory (cam)
circuits and architectures: a tutorial and survey, IEEE Journal of Solid-
State Circuits 41 (3) (2006) 712–727. doi:10.1109/JSSC.2005.864128.

[56] N. Feamster, J. Rexford, E. Zegura, The road to sdn: An intellectual
history of programmable networks, SIGCOMM Comput. Commun. Rev.
44 (2) (2014) 87–98. doi:10.1145/2602204.2602219.
URL https://doi.org/10.1145/2602204.2602219

[57] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, M. Thottan, Measuring control plane latency in sdn-

14

enabled switches, in: Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research, SOSR ’15, As-
sociation for Computing Machinery, New York, NY, USA, 2015.
doi:10.1145/2774993.2775069.
URL https://doi.org/10.1145/2774993.2775069

[58] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
S. Peter, Evaluating the power of flexible packet processing for network
resource allocation, in: 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), USENIX Association,
Boston, MA, 2017, pp. 67–82.
URL https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/sharma

[59] S. Ibanez, G. Antichi, G. Brebner, N. McKeown, Event-driven packet
processing, in: Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, HotNets ’19, Association for Computing Machinery, New
York, NY, USA, 2019, p. 133–140. doi:10.1145/3365609.3365848.
URL https://doi.org/10.1145/3365609.3365848

[60] Z. Hang, M. Wen, Y. Shi, C. Zhang, Programming protocol-independent
packet processors high-level programming (p4hlp): Towards unified high-
level programming for a commodity programmable switch, Electronics
8 (9) (2019). doi:10.3390/electronics8090958.
URL https://www.mdpi.com/2079-9292/8/9/958

[61] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, G. Carle, Moon-
Gen: A Scriptable High-Speed Packet Generator, in: Internet Measure-
ment Conference 2015 (IMC’15), Tokyo, Japan, 2015.

[62] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, B. Ja-
cob, The structural simulation toolkit, SIGMETRICS Perform. Eval. Rev.
38 (4) (2011) 37–42. doi:10.1145/1964218.1964225.
URL https://doi.org/10.1145/1964218.1964225

[63] S. N. Laboratories, The Structural Simulation Toolkit, http://sst-

simulator.org/.
[64] T. Hoefler, T. Schneider, A. Lumsdaine, Characterizing the influence of

system noise on large-scale applications by simulation, in: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, IEEE Computer
Society, USA, 2010, p. 1–11. doi:10.1109/SC.2010.12.
URL https://doi.org/10.1109/SC.2010.12

[65] R. Pagh, F. F. Rodler, Cuckoo hashing, Journal of Algorithms 51 (2)
(2004) 122 – 144. doi:10.1016/j.jalgor.2003.12.002.

[66] L. J. Guibas, E. Szemeredi, The analysis of double hashing, Jour-
nal of Computer and System Sciences 16 (2) (1978) 226–274.
doi:https://doi.org/10.1016/0022-0000(78)90046-6.
URL https://www.sciencedirect.com/science/article/pii/

0022000078900466

[67] Y. Yuan, O. Alama, J. Fei, J. Nelson, D. R. K. Ports, A. Sapio, M. Canini,
N. S. Kim, Unlocking the power of inline Floating-Point operations on
programmable switches, in: 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), USENIX Association,
Renton, WA, 2022, pp. 683–700.
URL https://www.usenix.org/conference/nsdi22/

presentation/yuan

15

