
HammingMesh: A Network Topology for
Large-Scale Deep Learning

Torsten Hoefler∗†, Tommaso Bonato∗, Daniele De Sensi∗, Salvatore Di Girolamo∗, Shigang Li∗‡,
Marco Heddes†, Jon Belk†, Deepak Goel†, Miguel Castro†, and Steve Scott†

∗Department of Computer Science ETH Zurich, Switzerland
†Microsoft Corporation, United States of America

∗{first-name.last-name}@inf.ethz.ch, †{first-name.last-name}@microsoft.com, ‡{first-name-last-name.cs}@gmail.com

Abstract—Numerous microarchitectural optimizations un-
locked tremendous processing power for deep neural networks
that in turn fueled the AI revolution. With the exhaustion of
such optimizations, the growth of modern AI is now gated
by the performance of training systems, especially their data
movement. Instead of focusing on single accelerators, we inves-
tigate data-movement characteristics of large-scale training at
full system scale. Based on our workload analysis, we design
HammingMesh, a novel network topology that provides high
bandwidth at low cost with high job scheduling flexibility. Specif-
ically, HammingMesh can support full bandwidth and isolation
to deep learning training jobs with two dimensions of parallelism.
Furthermore, it also supports high global bandwidth for generic
traffic. Thus, HammingMesh will power future large-scale deep
learning systems with extreme bandwidth requirements.

Index Terms—Networking, Deep Learning, Clusters

I. MOTIVATION

Artificial intelligence is experiencing unprecedented growth
providing seemingly open-ended opportunity. Deep learning
models combine many layers of operators into a complex
function that is trained by optimizing its parameters to large
datasets. Given the abundance of sensor, simulation, and
human artifact data, this new model of designing computer
programs, also known as data-driven programming or “soft-
ware 2.0” [1], is mainly limited by the capability of machines
to perform the compute- and data-intensive training jobs [2].
In fact, the predictive quality of models improves as their size
and training data grow to unprecedented scales [3]. Building
deep learning supercomputers, to both explore the limits of
artificial intelligence and commoditize it, is becoming not only
interesting to big industry but also humanity as a whole.

A plethora of different model types exist in deep learning
and new major models are developed every two to three
years. Yet, their computational structure is similar—they con-
sist of layers of operators and they are fundamentally data-
intensive [4]. Many domain-specific accelerators take advan-
tage of peculiarities of deep learning workloads be it matrix
multiply units (“tensor cores”) [5], specialized vector cores [6],
or specific low-precision datatypes [7]. Those optimizations
can lead to orders of magnitude efficiency improvements [8],
[9]. Yet, as we are approaching the limits of such microar-

Global Topology
(e.g., fat tree)

HammingMesh
(many configurations)

Local Topology
(e.g., 2D Torus)

reduce bandwidth

placement flexibility

injection bandwidth

global bandwidth

-
-

Fig. 1: HammingMesh’s bandwidth-cost-flexibility tradeoff.

chitectural improvements, we need to direct our focus to the
system level.

Today’s training jobs are already limited by data move-
ment [4]. In addition, trends in deep neural networks, such
as sparsity, further increase those bandwidth demands in
the near future [10]. Memory and network bandwidth are
expensive—in fact, they form the largest cost component
in today’s systems [11]. Standard HPC systems with the
newest InfiniBand adapters can offer 400 Gb/s but modern
deep learning training systems offer much higher bandwidths.
Google’s TPUv2, designed seven years ago, has 1 Tbps off-
chip bandwidth [12], AWS’ Trainium has up to 1.6 Tbps per
Tm1n instance [13], and Nvidia A100 and H100 chips have 4.8
and 7.2 Tbps (local) NVLINK connectivity, respectively [14],
[15]. The chips in Tesla’s Dojo deep learning supercomputer
even have 128 Tbps off-chip bandwidth—more than a network
switch [16]. Connecting these extreme-bandwidth chips at
reasonable cost is a daunting task and today’s solutions, such
as NVLINK, provide only local islands of high bandwidth.

We argue that general-purpose HPC and datacenter topolo-
gies are not cost-effective at these endpoint injection band-
widths. Yet, workload specialization, similar to existing mi-
croarchitectural optimizations, can lead to an efficient de-
sign that provides the needed high-bandwidth networking.
We begin with developing a generic model that accurately
represents the fundamental data movement characteristics of
deep learning workloads. Our model shows the inadequacy
of the simplistic view that the main communication in deep
learning is allreduce [17], [18]. In fact, we show that commu-
nication can be expressed as a concurrent mixture of pipelines
and orthogonal reductions forming toroidal data movement

ar
X

iv
:2

20
9.

01
34

6v
1

 [
cs

.D
C

]
 3

 S
ep

 2
02

2

1,1,D

2,1,1

3,1,1

1,2,D

2,2,1

3,2,1

1,P,D

2,P,D

O,P,D

1,1,2

2,1,1

3,1,1

1,2,2

2,2,1

3,2,1

1,P,2

2,P,2

O,P,2

1
2

D
allreduce ring

communication allreduce ring or neighbor communication

1

2

O

1 2 P

pipeline communication

1,1,1

2,1,1

O,1,1

2,2,1

O,2,1

2,P,1

O,P,1

1,2,1 1,P,1

Data Parallelism Pipeline Parallelism Operator Parallelism 3D - Data, Pipeline, and Operator Parallelism

Fig. 2: Distribution strategies for parallel deep neural network training.

patterns. This formulation shows that today’s HPC networks,
optimized for full global (bisection) bandwidth, are ineffi-
cient for deep learning workloads. Specifically, their global
bandwidth is overprovisioned while their local bandwidth is
underprovisioned.

We use our insights to develop HammingMesh, a flexible
topology that can adjust the ratio of local and global bandwidth
for deep learning workloads. HammingMesh combines ideas
from torus and global-bandwidth topologies (e.g., fat tree)
to enable a flexibility-cost tradeoff shown schematically in
Figure 1. Inspired by machine learning traffic patterns, Ham-
mingMesh connects local high-bandwidth 2D meshes using
row and column (blue and red) switches into global networks1.

In summary, we show how deep learning communication
can be modeled as sets of orthogonal and parallel Hamiltonian
cycles to simplify mapping and reasoning. Based on this
observation, we define principles for network design for deep
learning workloads. Specifically, our HammingMesh topology

• uses technology-optimized local (e.g., PCB board) and
global (optical, switched) connectivity.

• utilizes limited packet forwarding capabilities in the
network endpoints to achieve lower cost and higher
flexibility.

• enables full-bandwidth embedding of virtual topologies
with deep learning traffic characteristics.

• supports flexible job allocation even with failed nodes.
• enables flexible configuration of oversubscription factors

to adjust global bandwidth.

With those principles, HammingMesh enables extreme off-
chip bandwidths to nearest neighbors at more than 8x cheaper
allreduce bandwidth compared to standard HPC topologies
such as fat trees. HammingMesh reduces the number of exter-
nal switches and cables and thus reduces overall system cost.
Furthermore, it provides significantly higher flexibility than
torus networks. HammingMesh also enables seamless scaling
to larger domains without separation between on- and off-
chassis programming models (like NVLINK vs. InfiniBand).
And last but not least, we believe that HammingMesh topolo-
gies extend to other machine learning, (multi)linear algebra,
parallel solvers, and many other workloads with similar traffic
characteristics.

We start with a characterization of parallel deep learning and
the related data movement patterns. For reference, we provide
an overview of symbols used in this paper in Table I.

1The name HammingMesh is inspired by the structural similarity to 2D
Hamming Graphs with Meshes as vertices.

Symbol Description
M number of examples per minibatch
NP number of network parameters
W size of a word

D, P , O degree of data, pipeline, operator parallelism
a, b and x, y 2D HammingMesh board and global sizes

TABLE I: Symbols used in the paper

II. COMMUNICATION IN DISTRIBUTED DEEP LEARNING

One iteration of deep learning training with Stochastic
Gradient Descent (SGD) consists of two phases: the forward

e

f(x)

L

pass and the backward pass. The
forward pass evaluates the network
function f(x) on a set of M exam-
ples, also called a “minibatch”. The
backward pass of SGD computes
the average loss L and propagates the errors e backwards
through the network to adapt the parameters P . This training
process proceeds through multiple (computationally identical)
iterations until the model achieves the desired accuracy.

Parallelism and data distribution can fundamentally be
arranged along three axes: data parallelism, pipeline paral-
lelism, and operator parallelism [19]. The latter two are often
summarized as model parallelism and operator parallelism
is sometimes called tensor parallelism [13]. We now briefly
discuss their main characteristics.

A. Data parallelism
When parallelizing over the training data, we train D

separate copies of the model, each with different examples. To
achieve exactly the same result as in serial training, we sum
the distributed gradients before applying them to the weights
at the end of each iteration. If the network has NP parameters,
then the communication volume of this step is WNP .

Modern deep neural networks have millions or billions
of parameters, making this communication step expensive.
Thus, many optimizations target gradient summation [18]—
some even change convergence properties during the train-
ing process but maintain final result quality [20]. Dozens
of different techniques have been developed to optimize
this communication—however, all perform some form of
distributed summation operation like MPI Allreduce. Data-
parallelism differs thus mostly in the details such as invoca-
tion frequency, consistency, and sparsity [18], [21]–[28]. We
describe various schemes in Appendix A in more detail.

B. Pipeline parallelism
Deep neural networks are evaluated layer by layer with the

outputs of layer i feeding as inputs into layer i + 1. Back-
propagation is performed along the reverse direction starting

y,1 y,2 y,3 y,x

1,1 1,2 1,3 1,x

2,1 2,2 2,3 2,x

3,1 3,2 3,3 3,x

…

…

…

…

…………

N1 N2 N3 N4

S1 S2 S3 S4

W1

W2

W3

W4

E1

E2

E3

E4

four directions
per plane (N,S,E,W)

four planes
per accelerator

axb accelerators
per board

4x4 board

inexpensive short
PCB connections

on board

each plane fully-connected in xaccelerator
package

2x2
board

packet
switch

each
 p

lan
e fu

lly-co
n

n
ected

 in
 y

Fig. 3: HammingMesh structure: left x× y Hx2Mesh, right Hx4Mesh board, both with four planes.

at the loss function L after the last layer and proceeding
from layer i + 1 to layer i. We can model the network
as a pipeline with P stages with one or more layers per
stage [29]. Forward and backward passes can be interleaved
at each processing element to form a bidirectional training
pipeline [30]. Pipelines suffer from characteristic start-up and
tear-down overheads. These can be reduced by running two
pipelines in both directions [31] or by using asynchronous
schemes that impact convergence [32].

Overall, pipelining schemes can use P processors with a
nearest-neighbor communication volume proportional to the
number of output activations at the cut layers.

C. Operator parallelism

Very large layer computations (operators) can be distributed
to O processors. Most deep learning layer operators follow
computational schedules of (multi-)linear algebra and tensor
contractions and require either (tightly-coupled) distributed
reductions or nearest-neighbor communications. We discuss
communication schemes of typical operators in Appendix B.

D. Overall communication pattern

When all forms of parallelism are used, then the resulting
job comprises D×P×O accelerators; each accelerator in a job
has a logical address (1..D, 1..P, 1..O). The data-, pipeline-,
and operator-parallel communication can be arranged as one-
dimensional slices (rings) by varying only one coordinate of
the Cartesian structure. Pipelines would leave one connection
of the ring unused. For example, the data-parallel dimension
consists of P ·O rings of length D each. Each of those rings
represents a single allreduce. We show efficient ring-based
reduction and broadcast algorithms for large data volumes in
Section V-A2.

The overall composition of communication patterns forms
a torus as illustrated in the right part of Figure 2 for a 3×3×3
example: Both the operator and the data parallel dimensions
use nine simultaneous allreductions of size three each. The
pipeline parallel dimension uses nine three-deep pipelines on
three different model replicas, each split in three pieces.

While we can map such a logical torus to a full-bandwidth
network topology, it seems wasteful to provide full bandwidth
for sparse communication. For example, a 400 Gb/s non-
blocking fat tree with 16,384 endpoints provides full bisection
bandwidth of more than 16,384·50GB/s

2 = 410 TB/s. A bi-
directional 32x32x16 torus communication pattern requires at
most 32 · 16 · 2 · 50 GB/s= 51.2 TB/s bisections (cutting one
dimension of size 32) - a mere 12.5% of the offered bandwidth.
In other words, 88% of the available bandwidth will remain
unused and is wasted. Furthermore, it is not always simple
to map such torus communication patterns efficiently to full-
bandwidth low-diameter topologies in practice [33].

III. HAMMINGMESH

Based on the communication workload analysis, we now
design a flexible and efficient network topology. The basic
requirements are to support highest injection bandwidth for a
set of jobs, each following a virtual toroidal communication
topology. We note that medium-size models are often decom-
posed only in two dimensions in practice (usually data and
pipeline or data and operator). Only extreme-scale workloads
require all three dimensions—even then, communication along
the data parallel dimension only happens after one complete
iteration. Thus, we use a two-dimensional physical topology.

As a case study, we assume a modern deep learning acceler-
ator package with 16 400 Gb/s off-chip network links, a total
network injection bandwidth of 800 GB/s (top left in Figure 3).
Our topology design also takes technology costs into account:
Similar to Dragonfly, which combines local short copper
cables with global long fiber cables to design a cost-effective
overall topology, we combine such local groups with a global
topology. Different from Dragonfly, we choose two quite
distinct topologies: The local groups are formed by a local in-
expensive high-bandwidth 2D mesh using short metal traces on
PCB boards. This is the opposite of Dragonfly designs, which
combine densely-connected local groups (“virtual switches”)
and connect those fully globally. HammingMesh combines
sparsely connected boards in a dimension-wise (not globally)
fully-connected topology. Those boards are connected by a

Small Cluster (≈1,000 accelerators) Large Cluster (≈16,000 accelerators)

Topology cost
[M$]

glob. BW
[% inject]

global
saving

ared. BW
[% peak]

ared.
saving diam. cost

[M$]
glob. BW
[% inject]

global
saving

ared. BW
[% peak]

ared.
saving diam.

nonbl. FT 25.3 99.9 1.0x 98.9 1.0x 4 680 98.9 1.0x 99.8 1.0x 6
50% tap. FT 17.6 51.2 0.7x 98.9 1.4x 4 419 47.6 0.8x 99.8 1.6x 6
75% tap. FT 13.2 25.7 0.5x 98.9 1.9x 4 271 24.0 0.6x 99.8 2.5x 6

Dragonfly 27.9 62.9 0.6x 98.8 0.9x 3 429 71.5 1.2x 98.6 1.6x 5
2D HyperX2 10.8 91.6 2.1x 98.1 2.3x 4 448 95.8 1.5x 91.4 1.4x 8

Hx2Mesh 5.4 25.4 1.2x 98.3 4.7x 4 224 25.0 0.8x 92.3 2.8x 8
Hx4Mesh 2.7 11.3 1.0x 98.4 9.3x 8 43.3 10.5 1.7x 92.2 14.5x 8
2D torus 2.5 2.0 0.2x 98.1 10.1x 32 39.5 1.1 0.2x 91.4 15.7x 128

TABLE II: Overview of our example networks (small and large cluster) using the cost model in Section III-C. All bandwidths are
the result of the packet-level simulations detailed in Section V-A. Global alltoall bandwidth is reported as share of the injection
bandwidth for large messages (1.6 Tb/s). Allreduce bandwidth is reported as share of the theoretical optimum (1/2 of the
injection bandwidth) for large messages. The cost savings for global and allreduce bandwidth are relative to the corresponding
network cost of the nonblocking fat tree. Note that the diameter counts all cables and its derivation is explained in Section III-B.

two-dimensional Hamming graph, in which each dimension is
logically fully connected (e.g., by a fat tree). All accelerator
ports are arranged in planes with four directions each. Our
example accelerator has four planes (top left in Figure 3),
e.g., plane 1 has ports E1, W1, N1, and S1. We assume that
each accelerator can forward packets within a plane like any
network switch. Accelerators do not have to forward packets
between planes, e.g., packets arriving at N1 may only be
forwarded to E1, W1, or S1 but none of the other ports.
Thus, only simple 4x4 switches are needed at each accelerator.
Figure 3 illustrates the structure in detail.

A 2D HammingMesh is parameterized by its number of
planes and four additional numbers: (a, b), the dimensions of
the board, and (x, y), the dimensions of the global topology.
It connects a total of abxy accelerators. We abbreviate Ham-
mingMesh with HxMesh in the following. Furthermore, an
HxMesh with an a× b accelerator board is called HaxbMesh,
e.g., for a 2x2 board, H2x2Mesh. For square board topologies,
we skip the first number, e.g., an H2x2Mesh that connects
10x10 boards is called a 10x10 Hx2Mesh.

HxMesh has a large design space: We can combine different
board and global topologies, e.g., 3D mesh boards with global
Slim Fly topologies [34]. In this work, we consider 2D boards
as most practical for PCB traces. The board arrangement could
be reduced to a 1D HxMesh, where y = 1 and each Nk link is
connected to the corresponding Sk link (“wrapped around”).
The same global topology can also span multiple rows or
columns (e.g., full boards in a single fat tree). For ease of
exposition, we limit ourselves to 2D HxMeshes using 2D
boards and row/column-separated global topologies. We use
two-level fat trees as global topologies to connect the boards
column and row wise. If the boards can be connected with a
single 64-port switch, we use that instead of a fat tree.

A. Bisection and global bandwidth

Bisection cut is defined as the minimal number of connec-
tions that would need to be cut in order to bisect the network
into two pieces, each with an equal number of accelerators.
The bisection bandwidth is the cut multiplied by the link

2Note that a 2D HyperX is identical to an Hx1Mesh

bandwidth. Let us assume a single-plane of an x×y HxaMesh
(square board) with x ≤ y and y even, wlog. We now consider
the xy/2 “lower” half boards with y coordinates 1, 2, . . . y/2.
We split the HxMesh into two equal pieces by cutting the 2a
links in y direction of each of the lower half of the boards.
This results in a total cut width of axy. Each accelerator has
four network links per plane, a total injection bandwidth of
4a2 per board. We have xy/2 boards with a total injection
bandwidth of 4a2xy/2 = 2xya2 in each partition. Thus, the
relative bisection bandwidth is axy/2xya2 = 1/2a.

In a bisection traffic pattern, all traffic crosses the network
bisection (any two communicating endpoints are in different
sets of the bisection). Such (worst-case) patterns are rare
in practice. A more useful pattern, more often observed in
practice is alltoall, where each process sends to all other
processes. This pattern is the basis of parallel transpositions,
Fast Fourier Transforms, and many graph algorithms. The
achievable theoretical bandwidth for such alltoall patterns is
often called “global bandwidth”. Some topology constructions
take advantage of the fact that global bandwidth is higher than
bisection bandwidth. Prisacari et al. [35] shows that full-global
bandwidth (alltoall) fat trees can be constructed with 25%
less switches than nonblocking fat trees. Dragonfly [36], Slim
Fly [34], or other low-diameter topologies [37] can further
reduce the number of switches in very large installations while
maintaining full global bandwidth. As is customary for low-
diameter topologies [34], [36], we assess it using packet-level
simulations of alltoall traffic.

B. Network diameter
We now analyze the diameter of the different topologies by

counting cables between source and destination. For example,
a two-level fat tree has diameter four, while many works
discount the cable to/from the endpoint, we count it to ensure
fairness with direct topologies such as simple torus networks.

To compute the diameter of HxMesh, we consider the
distance between two accelerators on two different boards.
Both accelerators are as distant as possible from the edges of
the corresponding boards, and source and destination boards
are on different rows and columns. b(a − 1)/2c hops lead
from an inner accelerator on a board to the East or West edge.

The switch allows to take two cables to an intermediate board
(sharing the same HxMesh row of the source board, and the
same HxMesh column of the destination board). Once on the
intermediate board, we need another b(a−1)/2c hops to reach
the correct board column. From there, we need b(b − 1)/2c
hops to reach the North or South edge, and then two cables
(through the switch) to reach the destination board. Eventually,
other b(b− 1)/2c hops are needed on the destination board to
reach the destination accelerator.

The previous discussion assumes a flat (alltoall) global
topology, which is not practical for large x and y. If we instead
use a full bandwidth fat tree built from routers with k ports for
global connectivity, it has a diameter of 2(dlogk/2 q/ke+ 1),
where q is the number of endpoints. Because in HxMesh a tree
connects either boards on the same column or on the same row,
and because each tree is connected to two opposite edges of a
board, we either have q = 2x or q = 2y. Thus, the HxMesh di-
ameter is 2(b(a−1)/2c+b(b−1)/2c)+2(dlogk/2 2x/ke+1)+
+2(dlogk/2 2y/ke+ 1).

C. Cost model

We analyze capital expenditure when purchasing the sys-
tem in the following. We assume that the accelerator NICs
and ports as well as the PCB are included in the endpoint
packaging cost for all topologies. We charge for the network
equipment: optical transceivers, cables, and switches. We use
three types of cables and a single type of switch with costs
from Colfaxdirect (in April 2022). A single 64-port switch
costs $14,280. One 20m Adaptive optical Cable (AoC) costs
$603 and one 5m Direct Attach Cables (DAC) costs $272. All
topologies can be built with these two types of cables using
standard 19 inch racks. To compute the costs in Table II, we
use DAC cables to connect to the endpoints and AoC cables
between switches. More details are found in Appendix E.

D. Example topologies

We consider a small cluster with approximately 1,000
accelerators and a large cluster with approximately 16,000
accelerators as specific design points to compare realistic
networks. We compare various fat trees (nonblocking, 50%,
75% tapered), full bandwidth Dragonfly, and two-dimensional
torus, with Hx2Mesh and Hx4Mesh example topologies.

Table II summarizes the main cost and bandwidth results.
Global and allreduce bandwidth are determined using packet-
level simulations (see Section V) for large messages. For all
experiments, we simulated a single plane of HammingMesh
and four planes for all other topologies, i.e., a total injection
bandwidth of 4×400 Gb/s. We use industry-standard layouts
and cable configurations for the cost estimates: fat trees are
tapered beginning from the second level and connect all
endpoints using DAC and all switches using AoC. Dragonfly
topologies use full-bandwidth groups with a = 16 routers
each, p = 8 endpoints per router, and h = 8 links to other
groups with DAC links inside the groups and AoC links
between groups. The torus uses 2 × 2 board topologies with
discounted local PCB connectivity, similar to Hx2Mesh and

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

16 17 18

20 21 22

24 25 26

19

23

27

28 29 30 31

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

16 17 18

20 21 22

24 25 26

19

23

27

28 29 30 31

16 17 18

20 21 22

24 25 26

19

23

27

28 29 30 31

3D traffic (virtual topogy, 4x4x2) Physical allocation on Hx2Mesh
(3rd dimension traffic is routed over fat trees)

Fig. 4: 3D workload mapping onto Hx2Mesh example. Left:
virtual 4x4x2 topology. Right: mapping on Hx2Mesh.

only DAC cables between the boards. For HxMeshes, we
use DAC links to connect endpoints to switches along one
dimension, and AoC links for the other dimension. All inter-
switch links are AoC as in fat trees. All details and exact cable
counts are described in Appendix C.

E. Logical job topologies and failures in HxMesh

As we discussed in Section II-D, communication patterns
in deep learning can be modeled as sets of cycles. Typical
learning jobs use either logical 1D cycles for small models
with only data parallelism or 2D tori that combine data and
pipeline parallelism for medium-scale models or combining
pipeline and model parallelism for very large models. Each
specific training job will have a different optimal decompo-
sition resulting in 1D, 2D, or sometimes even 3D logical
communication topologies.

We use logical 2D topologies for our training jobs. Each
job uses several boards and requests a u× v layout (i.e., a, b
divides u, v, respectively). If the application topology follows
a 1D or 3D scheme, then users use standard folding techniques
to embed it into two dimensional jobs [38]. Figure 4 shows an
example of 3D virtual topology mapped on an Hx2Mesh phys-
ical topology. Processes can be sliced on the third dimension
and mapped on different boards. Communications between
different slices of the third dimension are routed over the per-
column or per-row fat trees, depending how different slices
are mapped. To minimize communication latency between
slices, consecutive slices should be adjacent to each other.
Furthermore, we will show in Section V-A2 how to accelerate
allreduce on a 2D torus instead of a ring.

It is easy to see that any consecutive u× v block of boards
in a 2D HxMesh has the same properties as a full u × v
HxMesh. We call such subnetworks virtual sub-HxMeshes.
They are a major strength of HxMesh compared to torus
networks in terms of fault tolerance as well as for allocating
jobs. In fact, HxMeshes major strength compared to torus
networks is that virtual subnetworks can be formed with non-
consecutive sets of boards (not only blocks): any set of boards
in an HxMesh where all boards that are in the same row have
the same sequence of column coordinates can form a virtual
subnetwork. We will show examples below together with a
motivation for subnetworks—faults.

a) Fault-tolerance: We assume that a board is the unit
of failure in an HxMesh, i.e., if an accelerator or link in a
board fail, the whole board is considered failed. This simplifies

system design and service. Partial failure modes (e.g., per
plane) are outside the scope of this work.

The left part of Figure 5 shows a 4x4 Hx2Mesh and three
board failures. We show two different subnetworks (many
more are possible): a 2x4 subnetwork (blue) with the physical
boards (1, 1), (1, 4), (2, 1), (2, 4), (3, 1), (3, 4), (4, 1), (4, 4)
and a 3x3 subnetwork (yellow) with the physical boards
(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4).
We also annotate the new coordinates of boards in the virtual
subnetworks. Remapping can be performed transparently to
the user application, which does not observe a difference
between a virtual and physical HxMesh in terms of network
performance. The right part of the figure shows the output of
our automatic mapping tool for a more complex configuration
of jobs (top, read job ids 1-3 are 3× 3 logical jobs etc.). We
analyze in detail the effects of fragmentation due to failed
boards in Section IV-B

3,1
4,1

3,2 3,3
4,2

1,1
1,1

1,2
1,3
1,2

2,1
2,1

2,2 2,3
2,2

3,1 3,2

3x3 job

2x4 job

[1 1 1 2 4 2 2 4]

[1 1 1 2 4 2 2 4]

[1 1 1 2 -1 2 2 -1]

[3 3 3 5 4 5 6 4]

[3 3 3 5 7 5 6 8]

[3 3 3 5 7 5 6 -1]

[-1 9 10 11 7 12 13 8]

[-1 9 14 15 16 17 18 19]

1-3:3x3; 4-5:2x3, 6-7:1x3,

8-9:1x2, 10-19:1x1

Fig. 5: Subnetworks in the case of failures

F. Tapering the dimensions

As we discussed in Section II-D, deep learning workloads
do not require much global bandwidth. We can thus reduce
the global bandwidth of HxMeshes further by tapering each
dimension to reduce the cost.

First, we observe that for mapping a single ring along one
dimension of an HxMesh, we only need two ports between
neighboring switches in that direction. Consider the Hx2Mesh
in Figure 6 with a two-level fat tree to implement the global
connections and a ring spanning all accelerators in x direction
(we show only one of the 8 identical physical rings for clarity):

1 2 3 4 5

6 7
8

9 10 11 12

13

1415

16

Fig. 6: Ring mapping example in a two-level fat tree.

We observe that switches in the top level only route two
connections between neighboring switches. In this example,
only 50% of the links are utilized. More generally, we rarely
need full bandwidth in the global topology. We only need it
for global traffic and to support fragmented (non-consecutive)
allocations. For example, for a large deep learning system, we
may only need 20% global bandwidth to support global traffic

and moderate fragmentation. This provides a second dial in
addition to the board size to adjust the tradeoff between global
bandwidth and cost.

IV. USING HAMMINGMESH IN PRACTICE

Training jobs request two-dimensional sets of boards. The
allocation of rectangular jobs on a 2D torus is equivalent to the
strongly NP-hard 2D bin packing problem [39]. Yet, HxMesh
allocations support splitting blocks as illustrated in Figure 5,
significantly simplifying the problem. We now show a simple
and effective greedy allocation strategy.

A. Allocating jobs on HammingMesh

We develop the following simple greedy allocation strategy
for an au× bv job to an x× y HxMesh:

1) Identify all available indexes in each row, resulting in y
sets of at most x indexes.

2) Set S (“selected”) to the first row with at least v indexes.
3) Add another row whose intersection with all rows in S

has at least v indexes to S.
4) Repeat the last step until S contains u rows, fail if no

such set exists.

We implemented this procedure in less than 50 lines of
Python and allocated an extremely large 1,000x1,000 HxMesh
in less than one second on a laptop. We now outline a set of
simple optimization heuristics that can be used to improve
utilization of HxMeshes.

Transpose If it fails to find an u × v block, then we retry
to find a (transposed) v × u block.

Aspect ratio Jobs could also allow to change their aspect
ratio. For example, a job requesting 4x16 boards may also
function well with 2x32 boards.

Sorting If the jobs to be allocated are known in advance,
they can be allocated from the largest to the smallest to reduce
fragmentation.

Locality The allocation algorithm can evaluate different as-
pect ratios and select the one that, for alltoall traffic, minimizes
the traffic in the upper levels of the trees connecting the boards
(so that performance is less affected by tapering).

We analyze the impact of these optimization on the system
utilization below.

a) Job interference: A valuable property of this alloca-
tion scheme is that it avoids network interference between
different jobs. Because each board is used at most by one job
at a time, interference can never occur within the board. Even
when source and destination are on two different boards on
the same row (or on the same column) a nonblocking fat tree
with packet spraying can avoid interference. When source and
destination boards are on different rows and different columns,
packets will traverse an intermediate board (Section IV-C).
Our allocation scheme ensures that each board shares at least
the row or the column with another board belonging to the
same job (e.g., see Figure 5). Thus, packets never cross boards
belonging to a different job to reach any destination.

b) Defragmentation: Modern cluster and cloud systems
supports efficient checkpoint/restart. Thus, we assume that we
can defragment the system by checkpointing jobs, shuffling
them, and restarting them in a better permutation. Our example
accelerator can send 64 GiB in less than 80 ms. Thus, a
system with reasonable global bandwidth (e.g., 10%) can be
defragmented in less than a second. Given the long running
times of deep learning workloads (hours to days), we expect
that such defragmentation will not impact the user experience
or utilization of the overall system during operation.

B. Experimental workloads
We analyze the quality of our allocation algorithm using the

distribution of job sizes extracted from a two-month workload
log of Alibaba’s ML-as-a-service (MLaaS) cluster with 6,742
GPUs [40], [41]. We aim to simulate how well a representative
job mix that completely fills a full global bandwidth topology
can be allocated on an HxMesh. For this, we draw 1,000
such job mixes from the job size distribution. We do this by
sampling a job size, multiply it by the size of the board, and
add it to the cluster. We repeat this step until we fill the target
cluster fully (we carry samples that do not fit to the next jobs
mix). We store the (random) order of drawn samples in a job
trace. Figure 7 shows the cumulative distribution function of
the proportion of boards allocated to jobs of a specific size
for both the original distribution and the sampled distribution
that fully occupy the Alibaba cluster.

P
ro

p
o

rt
io

n
 o

f
b

o
ar

d
s

al
lo

ca
te

d

Job size – Cumulative Distribution Function (CDF)

e.g., 39% of the boards are allocated
to jobs of less than 100 boards Sampled

Original Alibaba

Fig. 7: Proportion of boards allocated to a certain size job.

Figure 8 shows the system utilization of our greedy allo-
cation algorithm and different optimization heuristics on the
different HxMeshes described in Table II. The figure shows the
distribution of 1,000 allocations of random job traces. Full-
global bandwidth topologies achieve 100%. By default, we
make jobs as square as possible. The aspect ratio optimization
allows changing the aspect ratio up to eight.

We observe that, even without any optimization, the greedy
algorithm leads to a 90% system utilization. When transposing
the jobs this further increases by an additional 5-8%. If jobs are
further sorted by their size, we observe a mean and median
utilization higher than 98%, with the 99th percentile higher
than 95%.

We now investigate the expected load on the upper levels
of the fat tree in the large cluster variants. Figure 9 shows the
fraction of traffic crossing the upper levels of the fat trees, both
for jobs running alltoall traffic or allreduce traffic, respectively.

median

99%ile

Small 16x16 Hx2Mesh Small 8x8 Hx4Mesh Large 64x64 Hx2Mesh Large 32x32 Hx4Mesh

70

80

90

100

S
ys

te
m

 U
ti
liz

a
ti
o
n
 (

%
)

greedy

mean

greedy + transpose
greedy + transpose + aspect
greedy + transpose + aspect + locality

greedy + transpose + aspect + sort
greedy + transpose + aspect + sort + locality

Fig. 8: System utilization using different optimizations. Each
color corresponds to a specific set of optimizations.

Large 64x64 Hx2Mesh Large 32x32 Hx4Mesh
0

20

40

Al
lto

al
l U

pp
er

La
ye

r T
ra

ffi
c

(%
)

Large 64x64 Hx2Mesh Large 32x32 Hx4Mesh
0

5

10

15

Al
lre

du
ce

 U
pp

er
La

ye
r T

ra
ffi

c
(%

)

greedy
greedy + transpose

greedy + transpose + aspect
greedy + transpose + aspect + locality

greedy + transpose + aspect + sort
greedy + transpose + aspect + sort + locality

Fig. 9: Fraction of traffic crossing upper fat tree levels.

We observe that in both cases the percentage of traffic
crossing the upper level is lower than 50%, thus justifying a
2:1 tapering for these types of workloads. For the large 32x32
Hx4Mesh all the boards on the same column (or on the same
row) can be connected through a single 64-ports switch, thus
not requiring a fat tree. Moreover, when the algorithm tries to
allocate jobs to improve the communication locality, the traffic
on the upper levels drops down to less than 25% for Hx4Mesh,
meaning that high tapering would not reduce performance. We
see in Figure 8 that the locality allocation heuristic does not
reduce overall system utilization.

Last, we investigate how random failures reduce the system
utilization (due to fragmentation). Figure 10 repeats our allo-
cation experiment but now with a varying number of randomly
failed boards. We report the system utilization as the number
of non-faulted boards allocated to jobs.

0 20 40
number of failed boards in small cluster

50

60

70

80

90

100

Sy
st

em
 U

til
iza

tio
n

(%
)

0 50 100
number of failed boards in large cluster

Hx2Small (Unsorted Jobs)
Hx2Small (Sorted Jobs)

Hx4Small (Unsorted Jobs)
Hx4Small (Sorted Jobs)

Hx2Large (Unsorted Jobs)
Hx2Large (Sorted Jobs)

Hx4Large (Unsorted Jobs)
Hx4Large (Sorted Jobs)

Fig. 10: HxMesh utilization for different numbers of failures.

The left shows the small clusters (256-board Hx2Mesh and
64-board Hx4Mesh) and the right shows the large clusters
(4,096-board Hx2Mesh and 1,024-board Hx4Mesh). In almost
all the cases, our allocation algorithm achieves a median uti-
lization of working boards (white dot inside the violin) higher
than 70%. In particular, this also holds with 40 failed boards,
62% of the small Hx4Mesh. We also observe that meshes with
fewer boards are more affected by random failures. Last, we
can see that allocating the jobs in their random arrival order
(rather than ordered by their size) decreases the utilization at
most by 10% on large networks.

C. Routing on HammingMesh

On HxMesh, packets are routed adaptively along all shortest
paths. We assume packet-level adaptive routing as imple-
mented in High-Performance Interconnects such as Sling-
shot [42] or InfiniBand [43]. To minimize packet reordering,
flowlet-level adaptive routing can be used as an approximation
on Ethernet networks [44]. Without loss of generality, we
assume input buffered switches and credit-based flow control.
We describe first how packets are routed when both source
and destination accelerators are on the same board, and then
how to route packets when source and destination are on two
different boards.

1) Routing on the same board: If both source and destina-
tion are on the same board, we use adaptive routing on the
torus network: The algorithm chooses the least loaded output
port at each accelerator (4x4 switch) along all shortest paths
between the two endpoints. Packets may be routed through fat
tree switches (similar to what happens in a 2D torus) or only
through on-board links.

2) Routing between different boards: If the source and
destination boards are on the same row, they are adaptively
routed in the source board to the closest edge (west or east),
and then on the fat tree to the destination board’s port closest
to the destination. On the fat tree, packets are forwarded using
up/down adaptive routing [45]. Once in the destination board,
the packet is adaptively routed to the destination. It is worth
noting that the packet might also need to be forwarded south
or north within the source or destination board to reach the
destination. Whether this happens in the source or destination
board (or in both) depends on the local load. When the source
and destination boards are on the same HxMesh column a
similar process is applied.

If source and destination boards are on different rows and
columns, packets must be forwarded through an intermediate
board. This board needs to be in the same row of the source
board and in the same column of the destination board (or
vice-versa). The path selection is adaptive and minimal and
packets cross two fat trees, one in each dimension.

3) Deadlock freedom: To guarantee deadlock-freedom
within the board, packets are forwarded using north-last rout-
ing [46]. Thus, the north direction can only be taken by
switches on the same column of the destination board. When
forwarding packets in the tree, up/down routing guarantees
deadlock-freedom. Although both the mesh and the fat tree
are deadlock-free, combining the two may result in deadlocks.

A simple solution to guarantee deadlock freedom uses mul-
tiple virtual channels by increasing the virtual channel at each
hop. However, this requires a number of virtual channels equal
to the network diameter. Instead we observe that, because both
the board and the fat tree guarantee deadlock freedom, it is
enough to increase the virtual channel when jumping from one
board to another (e.g., when a board injects a packet in the fat
tree). Because each packet crosses at most two fat trees, this
requires at most three virtual channels.

V. RESULTS AND COMPARISON

We now evaluate HxMesh topology options in comparison
with all topologies listed in Table II. We use the Structural
Simulation Toolkit (SST [47]), a packet-level network sim-
ulator, which has been validated against the Cray Slingshot
interconnect [42]. SST enables us to run (slightly modified)
full MPI applications directly in the simulation environment
where they react to dynamic network changes (e.g., conges-
tion). In total, we ran simulations of more than 120 billion
packets using more than 0.6 million core hours with parallel
simulations. The detailed configuration is described in Ap-
pendix F. We select various representative microbenchmarks
and scenarios for deep learning jobs and publish the full
simulation infrastructure such that readers can simulate their
own job setup.

A. Microbenchmarks

We start by analyzing well-known microbenchmark traffic
patterns to assess and compare achievable peak bandwidth.

1) Global traffic patterns: We first investigate global traffic
patterns such as alltoall and random permutations as global-
traffic workloads. We note that HammingMesh is not opti-
mized for those patterns as they are rare on deep learning
traffic.

a) Alltoall: Alltoall sends messages from each process
to all other processes. In our implementation, each of the p
processes performs p−1 iterations. In each iteration i, process
j sends to process j + i mod p in a balanced shift pattern.

Table II shows the results for 1 MiB messages while
Figure 11 shows the global bandwidth at different message
sizes. Small Hx2 and Hx4Meshes achieve bandwidths around
the cut width of 1/4 and 1/8, respectively (cf. Section III-A).
This is because not all global traffic crosses the bisection cuts,
especially for smaller clusters. The large cluster configuration
performs closer to those bounds and loses some bandwidth due
to adaptive routing overheads. Despite its lower bandwidth,
even large HxMeshes remain competitive in terms of cost-per
global bandwidth and some are even more cost effective on
global bandwidth than fat trees.

Fig. 11: Alltoall on the small topologies.
b) Random permutation: In permutation traffic, each

accelerator selects a unique random peer to send to and
receive from. Here, the achieved bandwidth also depends on
the location of both peers. Figure 12 shows the distributions

of receive bandwidths across all of the 1k accelerators in the
small cluster configurations.

Fig. 12: Bandwidth distribution per accelerator.

The figure also shows the average bandwidth as well as the
the cost per average bandwidth relative to a nonblocking fat
tree in the top part. Our results indicate that all topologies
have significant variance across different connections, which
makes job placement and locality significant. HxMeshes are
among the most cost effective topologies.

2) Reduction traffic patterns: We first describe our imple-
mentation of allreduce, enabled by the associativity of addi-
tion. We distinguish three fundamental algorithm types: trees,
pipelines, and near-optimal full-global bandwidth algorithms.

a) Simple trees: For small data, simple binary or bi-
nomial tree reductions are the best choice. They perform a
reduction of S bytes on p processors in time T ≈ log2(p)α+
log2(p)Sβ

3. This algorithm sends each data item a logarithmic
number of times. It is thus inefficient for the large data sizes
in deep learning training workloads and we do not consider
trees in this work.

b) Pipelined rings: With a single network interface, large
data volumes can be reduced in a simple pipelined ring. Here,
the data at each process is split into p segments. The operation
proceeds in two epochs and p−1 rounds per epoch. In the first
reduction epoch, each process i sends segment i to process i+1
mod p and receives a segment from process i − 1 mod p.
The received segment is added to the local data and sent on
to process i + 1 mod p in the next round. After p − 1 such
rounds, each process has the full sum of one segment. The
second epoch is simply sending the summed segments along
the pipeline. The overall time Tp ≈ 2pα+ 2Sβ is bandwidth
optimal because each process only sends and receives each
segment twice [48].

We propose bidirectional pipelined rings to utilize two
network interfaces by splitting the data size in half and
sending each half along a different direction. The latency stays
unchanged because each segment travels twice through the
whole ring but the data is half in each direction, leading to
a runtime of Tbp ≈ 2pα + Sβ. Here and in the following, β
is the time per Byte of each interface, i.e., a system with k
network interfaces can inject k/β Bytes per second.

We now extend this idea to four network interfaces per
HxMesh plane: we use two bidirectional rings, each reducing
a quarter of the data across all accelerators. The two rings

3with ≈, we omit additive constants and minor lower-order terms for clarity

are mapped to two disjoint Hamiltonian cycles covering all
accelerators of the HxMesh [49]. The overall time for this
scheme is Trings ≈ 2pα+ S

2 β.
c) Two-dimensional torus: Pipelined rings are

bandwidth-optimal if they can be mapped to Hamiltonian
cycles on the topology. However, we find that for large
HxMeshes and moderate message sizes, the latency
component can become a bottleneck. We thus define
another algorithm that uses a 2D toroidal communication
pattern with

√
p latency and good bandwidth usage: each

process executes first a reduce-scatter with the other processes
on the same row (cost

√
pα + S

2 β) [50]. Then each process
runs an allreduce with the other processes on the same
row, on the previously reduced chunk of size S√

p (cost
2(
√
pα + S

2
√
pβ)) and, eventually, an allgather with the other

processes on the same row (cost
√
pα+ S

2 β). To use all four
network interfaces at the same time, two of these allreduce
can be executed in parallel, each on half of the data each
(one reduce consider a transposed network). Thus, the overall
time for this scheme is T ≈ 2 · 2√pα+ Sβ(

1+2
√
p

4
√
p).

d) Summary: The pipeline ring and 2D torus algorithms
have sparse communication patterns: each process only com-
municates with two or four direct neighbors that can be
mapped perfectly to HxMesh. Broadcast and other collectives
can be implemented similarly (e.g., as the second part of
our allreduce) and follow similar tradeoffs. Furthermore, each
dimension of a logical job topology is typically small as the
total number of accelerators is the product of all dimensions.
For example, even for a very large system with 32,768
accelerators, each of the dimensions could only be of size
32 if we decompose the problem along all dimensions. This
means that the largest allreduce or broadcast would only be on
32 processes where ring algorithms would perform efficiently.

e) Full system allreduce job: This experiment shows a
single job using the last two allreduce algorithms on various
topologies. In Dragonfly and fat tree, each accelerator connects
with a single NIC to each of the four planes and we use
the standard “ring” algorithm. For the single allreduce on
the large HxMesh clusters, we use both the two bidirectional
rings (“rings”) as well as the two-dimensional torus (“torus”)
algorithm. Figure 13 shows the achieved bandwidths.

Fig. 13: Global allreduce using different algorithms.

We see that all topologies deliver nearly full bandwidth

for the ring algorithms. For large messages, HxMesh is 2.8x
to 14.5x cheaper per bandwidth than a nonblocking fat tree
(Table II). The torus algorithm, which is 2x less bandwidth-
efficient, achieves higher throughput at smaller message sizes.
This illustrates that multi-algorithms should be used to opti-
mize performance, similar to established practice in MPI [51].

B. DNN Workloads

We now proceed to define accurate communication patterns
including computation times for real DNN models. For this,
we choose three large representative models: ResNet-152, Cos-
moFlow, and Transformers (GPT-3) trained in FP32. We use
NVIDIA’s A100 GPU to benchmark runtimes of operators and
we model communication times based on the data volumes.

1) Communication traffic characterization: All example
models are constructed of a sequence of identical layers
containing multiple operators. Each parallel dimension carries
a different volume, depending on the details of the model,
training hyperparameters, and the other dimensions. We as-
sume the most general case where the network can utilize all
three forms of parallelism running on D×P ×O accelerators.

a) Data dimension: If we only have data parallelism
(O = P = 1), then each process needs to reduce all gra-
dients. If we distribute the model between O or P dimension
processes, then the total allreduce size is VD = WNP

OP . The
reduction happens once at the end of each iteration after
processing a full minibatch and draining the pipeline. It can be
overlapped per layer using nonblocking allreduce [52]–[54].

b) Pipeline dimension: If we only have pipeline paral-
lelism (D = O = 1) and NA output activations at the “cut”
layer then each process sends all M

P NA output values to the
next process in the forward pass and the same volume of
errors during the backward pass. If the layer and its inputs and
outputs are distributed to O PEs, then the total send volume
in this dimension is VP = MWNA

DPO . This communication
can be hidden at each accelerator as shown in Figure 14
by overlapping nonblocking send/receive operations (bottom,
blue) with operator computation (top, green).

…/recv[i]

op[i-1] op[i]

send[i-1]/recv[i+1] send[i]/recv[i+2]

op[i+1] op[i+2]

send[i+1]/…

time

Fig. 14: Overlap in pipelined-parallel execution

c) Operator dimension: For operator parallelism, each
process’ send volume depends only on the operator paralleliza-
tion itself and is not influenced by either D or P . The operator
can be seen as the “innermost loop” in this sense. Each
operator distribution scheme will have its own characteristics
that we capture by VO =WNO. The operator communication
volume during each forward and backward pass is a function
of the local minibatch size M/DP per process.

2) ResNets: ResNets achieve state of the art in many
vision tasks. The standard ResNet on the ImageNet dataset
has relatively small operators acting on 224×224×3 input
data that does not warrant parallelization. Thus, we use only

data parallelism (P=1, O=1). We simulate three sizes D =
{256, 512, 1024} with most-square jobs (e.g., 16×16) with a
minibatch size of M = 32, 768 [55] and M/D examples at
each accelerator. To reduce the latency overhead and overlap
communication with computation, we divide the gradients for
the 60.2M parameters of our ResNet-152 into 10 equal-sized
groups. Once a group is ready, we use a nonblocking allreduce
to perform the reduction asynchronously.

The compute time in one training iteration of ResNet-
152 is 108 ms on 1,024 A100s. The communication can be
overlapped nearly completely on all topologies. On HxMeshes
and torus, the complete iteration (including overlapped com-
munication) finishes in 110.1 ms and on the other topologies in
109.7 ms, i.e., less than 2.5% communication overhead in the
worst case. Other sizes had even less communication overhead.

Thus, the effective network cost savings of HxMesh com-
pared to other topology options can be calculated easily from
Table II. For example, an Hx4Mesh is more than 4.1x less
expensive than an 75% tapered fat tree and more than 7.8x
less expensive than a nonblocking fat tree.

3) CosmoFlow: CosmoFlow [56] is a convolutional net-
work with large input data, one input sample of CosmoFlow
is of size 128×128×128×4. Thus, we model a hybrid of
operator and data parallelism for CosmoFlow. We execute with
D = 256, P = 1, O = 4 on 1,024 accelerators. We assume a
minibatch size of M = 8, 192 [56] with a local batch size of
32. CosmoFlow mainly consists of convolutional layers and
fully-connected layers, with 8.9M trainable parameters total.
In the forward pass, each convolutional layer has to exchange a
halo region of the input data with its neighbors using send/recv
communication; each fully-connected layer uses allgather to
collect the input data. The backwards pass is similar using
send/recv, reducescatter, and allreduce communications.

CosmoFlow is more complex with two levels of parallelism
and different communication operations. The compute time of
CosmoFlow is 44.3 ms on A100. Nearly all communication
time can be overlapped leading to less than 2% overhead on
all topologies but Hx4Mesh and torus (3.4% and 4.4%).

4) DLRM: DLRM [57]–[59] uses a combination of model
parallelism and data parallelism for its embedding and MLP
layers, respectively. Two alltoall operations aggregate sparse
embedding lookups in the forward pass, and their corre-
sponding gradients in backward pass. Allreduce is required
to synchronize the gradients of the data-parallel MLP layers.
The parallelism of DLRM is limited by both the mini-batch
size and the embedding dimension. DLRM is trained with up
to 128 GPU nodes [57], [60]. The total runtimes on the fat
tree variants are 2.96 ms, 2.97 ms, and 2.99 ms, respectively.
On torus, the code executes for 3.12 ms. HyperX is at 2.94
ms. Hx2Mesh and Hx4Mesh are at 2.97 ms and 3.00 ms,
respectively. On A100, DLRM computes around 95 us, 209
us, and 796 us for the embedding, feature interaction, and
MLP layers respectively, and communicates 1 MB per alltoall
and 2.96 MB per allreduce. All simulation results are shown
in Figure 15.

ResNet GPT-3 GPT-3
MoE

CosmoFlow DLRM
0

2

4

6

8

Re
la

tiv
e

Co
st

 S
av

in
g

3.
7

1.
4

0.
8

2.
5

4.
0

2.
6

1.
5

0.
5

1.
7

3.
3

2.
0

1.
4

0.
4 1.

3

3.
1

4.
2

2.
5

0.
6

3.
4

5.
2

2.
1

1.
8

1.
0 1.

7

1.
1

0.
5

1.
9

0.
5 1.

0 1.
4

Hx2Mesh
nonblocking fat tree
fat tree 50% tapered
fat tree 75% tapered

Dragonfly
2D HyperX
2D Torus

ResNet GPT-3 GPT-3
MoE

CosmoFlow DLRM

Re
la

tiv
e

Co
st

 S
av

in
g

7.
8

1.
5

2.
7 3.
0

5.
6

5.
4

1.
6 1.
7 2.
1

4.
6

4.
1

1.
5

1.
4 1.
5

4.
4

8.
8

2.
7

1.
7

4.
0

7.
3

4.
4

2.
0

3.
1

2.
1

1.
6

1.
0

2.
0

1.
6

1.
2 2.

1

Hx4Mesh
Relative Cost Savings (Communication Overhead of DNN Workloads)

Fig. 15: HxMesh cost savings relative to other topologies.

5) Transformers: Transformers are the most communica-
tion intensive [4]. A transformer block consists of multi-
head attention (MHA) and two feed-forward (FF) lay-
ers. The MHA and FF input/outputs are of size (embed-
ding dimension×batch×sequence length). For example, GPT-
3’s [61] feed forward layers multiply 49,152×12,288 with
12,288×2,048 matrices per example in each layer.

GPT-3 has a total of 96 layers and each layer has activations
of size NA = 4 · 2, 048 × 12, 288 ≈ 100MB per example as
input and output. We choose P = 96, such that each pipeline
stage processes one layer, and no data parallelism (D = 1). For
operator parallelism, we use O = 4 and the scheme outlined
by Megatron-LM [62], which performs one allreduce for FF
and one for MHA in both the forward and backward passes.

All operations are the same size as the layer input/out-
put. Thus, the volume for both pipeline communication and
operator-dimension allreduce is NA per example for forward
and backward passes. One iteration of GPT-3 computes for
31.8 ms. The total runtimes on the three fat tree variants are
34.8 ms, 36.4 ms, and 37.5 ms, respectively. On torus, the code
executes for 72.2 ms per iteration. HyperX is at 40.9 ms. Hx2
and Hx4Mesh are at 41.7 ms and 49.9 ms, respectively.

For GPT-3 with Mixture-of-Experts (MoEs) [63], we use 16
experts. In GPT-3, the FFs have 1.8B parameters. Therefore,
each expert has 1.8B/16 ≈ 113M parameters. MoEs perform
two alltoalls for FF in both the forward and backward passes,
and all operations are the same size as the input/output. The
computation time on an A100 is 49.9 ms. The total runtime
on the fat trees varies from 52.2 ms to 52.9 ms depending on
tapering. On torus, the code executes for 73.8 ms per iteration.
HyperX takes 53.9 ms while Hx2 and Hx4Mesh are at 58.3
ms and 63.3 ms, respectively.

Figure 15 shows the relative cost savings of HxMesh
compared to other topologies. These are calculated as the ratio
of the network costs in Section II times the inverse of the ratio
of communication overheads presented in this section.

We conclude that both Hx2 and Hx4Mesh significantly
reduce network costs for DNN workloads. While some torus
network configurations can be cheaper than Hx2Mesh, they
provide significantly less allocation and management flexibil-
ity, especially in the presence of failures. Moreover, we also
conclude that even in the presence of alltoall communications

patterns in GPT-3 MoE and DLRM HxMesh topologies still
offer a significant cost advantage compared to traditional
topologies. As the scale of the network increases, Hx4Mesh
becomes significantly more cost efficient than Hx2Mesh espe-
cially in the presence of alltoall traffic.

VI. RELATED WORK

Dragonfly [36] and PERCS [64] are global bandwidth
topologies designed for lowest cost given electrical and optical
cables and highest global bandwidth. Slim Fly [34] and other
diameter-2 topologies [37] provide the maximum number of
nodes at diameter two (number of switch hops) and full global
bandwidth. While they minimize the number of switches and
cables, their structure does not take advantage of technology
parameters such as PCB traces or DAC vs. AoC cables.

Other closely related two-dimensional topologies are Flat-
tened Butterfly [65] and 2D Hyper-X networks [66]. Kim et
al. [36] show that Dragonfly topologies are 20% more cost
effective than Flattened Butterflies and HxMesh improves over
both. 2D Hyper-X topologies are isomorphic to 2D Hamming
graphs, i.e., Hx1Meshes with a 1x1 board layout. The Cube
Collective topology [67] uses on-board links in combination
with a fully-connected global topology similar to a Dragonfly.

Large-scale 3D torus networks have been used in supercom-
puters [68], [69]. Google’s TPUs also utilize torui for cost-
efficiency [70]. Higher-dimensional torus networks provide
higher global bandwidth [71]. Yet, torus networks remain rel-
atively inflexible for allocating jobs and dealing with failures.

A specific co-design between the network architecture and
the allreduce algorithm has been proposed [72] but it lacks
the cost-effectiveness of HammingMesh, especially on a more
general scenario involving also alltoall operations. Moreover
it is relatively more complex and it also lacks a robust job
failures analysis.

BML [73] uses the BCube topology to take advantage of
multiple NICs per server and implement only the data-parallel
dimension (allreduce). It achieves about twice the performance
for a ring algorithm compared to a parameter server on a
nonblocking fat tree and it can be built with 40% of the
switches of the fat tree. We show that an Hx4Mesh is more cost
efficient by achieving the optimal ring bandwidth at 10.8%
(1/9.3x) of the cost. We also show how model (pipeline and

operator) parallelism can be mapped efficiently for complex
parallel models.

HammingMesh explicitly combines on-board inexpensive
PCB-based mesh topologies with global AoC and DAC ca-
bled topologies. This general idea opens many avenues for
future designs such as combining different board and global
topologies to accommodate technology trends such as larger
packages with chiplets or co-packaged optics.

VII. DISCUSSION AND EXTENSIONS

The design of HammingMesh is based on two fundamental
insights: (1) deep learning workloads do not require full global
bandwidth and exhibit torus-like communication patterns and
(2) combining local low-cost meshes with a global full-
bandwidth topology unlocks a design space with intriguing
tradeoffs between cost, flexibility, and local/global bandwidth.
We show examples from deep learning but we expect that
other similar workloads such as tensor contractions, relevant in
quantum system simulation [74] or (multi)linear algebra [75]
can also be supported efficiently.

We could only show a small part of the design space,
combining local 2D meshes with fat trees. Straight-forward
extensions are a mix of different local torus topologies and
other global layouts (e.g., 1D HxMeshes). Furthermore, one
could consider different global-bandwidth topologies, such as
Dragonfly or Slim Fly to connect the rows and columns. Such
topologies enable connecting more nodes cheaply and could
even span multiple (potentially all) rows and/or columns.

Much of HxMesh’s cost benefit comes from cheaper global
topologies. One could change the arrangement of endpoints in
racks to enable more aggressive use of cheaper copper cables.

Several works shown the performance advantages of of-
floading the allreduce operation to switches. The idea behind
these works is to build a tree where the leaves are the compute
nodes, and the intermediate nodes are a subset of switches
in the network. Data packets get reduced by the switch and,
once they reach the root of the tree, the reduced data is
multicasted back to the nodes down the tree. This is orthogonal
to the topology design and similar solutions can be applied to
HammingMesh topologies, since it is enough to build such a
reduction tree. Switches in the fat tree can use SHARP [76],
[77] rely on programmable switches [17], [78], whereas a
similar technology can also be adopted within the boards, as
recently shown for systems similar to DGX-2 [79].

Existing state distribution strategies such as ZeRO [80]
or parallelizing frameworks such as FlexFlow [81] can take
advantage of HammingMesh topologies and achieve highest
performance when the traffic is mapped to rings or the
collective primitives discussed above.

VIII. CONCLUSIONS

HammingMesh is optimized specifically for machine learn-
ing workloads and their communication patterns. It relies
on the observation that deep learning training uses three-
dimensional communication patterns and rarely needs global

bandwidth. It supports extreme local bandwidth while con-
trolling the cost of global bandwidth. It banks on an inexpen-
sive local PCB-mesh interconnect together with a workload-
optimized global connectivity forming virtual torus networks
at adjustable global bandwidth.

Due to the lower number of switches and external cables, it
can be nearly always more cost effective than torus networks
while also offering higher global bandwidth and significantly
higher flexibility in job allocation and dealing with failures.

All-in-all, we believe that HammingMesh will drive future
deep learning systems and will also support adjacent work-
loads, such as (multi)linear algebra, quantum simulation, or
parallel solvers, that have Cartesian communication patterns.

ACKNOWLEDGMENT

We thank Microsoft for hosting TH’s sabbatical where
much of the idea was developed [82], [83]. We thank the
whole Azure Hardware Architecture team and especially Doug
Burger for their continued support and deep technical discus-
sions. We thank the Swiss National Supercomputing Center
(CSCS) for the compute resources on Piz Daint and the Slim
Fly cluster (thanks to Hussein Harake) to run the simulations.
Daniele De Sensi is supported by an ETH Postdoctoral Fel-
lowship (19-2 FEL-50).

REFERENCES

[1] A. Karpathy, “Software 2.0,” November 2017, [Online; posted
11-Nov-2017]. [Online]. Available: https://karpathy.medium.com/
software-2-0-a64152b37c35

[2] D. H. Dario Amodei, “Ai and compute,” online
https://openai.com/blog/ai-and-compute/, 05 2018.

[3] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” 2020.

[4] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
Movement Is All You Need: A Case Study on Optimizing Transformers,”
in Proceedings of Machine Learning and Systems 3 (MLSys 2021), Apr.
2021.

[5] NVIDIA Corporation, “NVIDIA Tesla V100 GPU Architecture,” Tech.
Rep. WP-08608-001 v1.1, 08 2017.

[6] Xilinx Corporation, “Xilinx AI Engines and Their Applications,” Tech.
Rep. WP506 (v1.1) July 10, 2020, 07 2020.

[7] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov,
A. Vinogradsky, S. Massengill, L. Yang, R. Bittner, A. Forin, H. Zhu,
T. Na, P. Patel, S. Che, L. Chand Koppaka, X. SONG, S. Som, K. Das,
S. T, S. Reinhardt, S. Lanka, E. Chung, and D. Burger, “Pushing the
limits of narrow precision inferencing at cloud scale with microsoft
floating point,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 10 271–10 281.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[9] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey of machine learning accelerators,” in 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
sep 2020. [Online]. Available: https://doi.org/10.1109%2Fhpec43674.
2020.9286149

[10] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in Deep Learning: Pruning and growth for efficient inference and training
in neural networks,” Journal of Machine Learning Research, vol. 22, no.
241, pp. 1–124, Sep. 2021.

[11] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to
the ”new normal”’ for computer architecture,” Computing in Science
Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[12] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. P. Jouppi, and D. A. Patterson, “Google’s Training Chips Revealed:
TPUv2 and TPUv3.” 08 2020, Hot Chips Symposium, pp. 1-70. 2020.

[13] P. DeSantis, “Keynote at AWS re:Invent 2021,” online
https://www.youtube.com/watch?v=9NEQbFLtDmg&t=4105s, 12
2021.

[14] NVIDIA Corporation, “NVIDIA DGX A100 System Architecture,”
Tech. Rep. WP-10083-001 v01, 07 2020.

[15] ——, “NVIDIA H100 Tensor Core GPU Architecture,” Tech. Rep.
V1.01, 03 2022.

[16] G. Venkataramanan, “Talk at tesla ai day,” online
https://www.youtube.com/watch?v=j0z4FweCy4M&t=6775s, 08 2021.

[17] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. R. K. Ports, and P. Richtárik, “Scaling
Distributed Machine Learning with In-Network Aggregation,” in Pro-
ceedings of the 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), Apr 2021.

[18] C. Renggli, D. Alistarh, M. Aghagolzadeh, and T. Hoefler, “SparCML:
High-Performance Sparse Communication for Machine Learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC19), Nov. 2019.

[19] T. Ben-Nun and T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-Depth Concurrency Analysis,” ACM Comput. Surv.,
vol. 52, no. 4, pp. 65:1–65:43, Aug. 2019.

[20] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov,
and C. Renggli, “The Convergence of Sparsified Gradient Methods,”
in Advances in Neural Information Processing Systems 31. Curran
Associates, Inc., Dec. 2018.

[21] A. Dieuleveut and K. K. Patel, “Communication trade-offs for local-
sgd with large step size,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[22] S. U. Stich, “Local sgd converges fast and communicates little,” 2019.
[23] E. Gorbunov, F. Hanzely, and P. Richtárik, “Local sgd: Unified theory

and new efficient methods,” 2020.
[24] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local

sgd on identical and heterogeneous data,” 2020.
[25] N. Dryden, S. A. Jacobs, T. Moon, and B. Van Essen, “Communication

quantization for data-parallel training of deep neural networks,” in
Proceedings of the Workshop on Machine Learning in High Performance
Computing Environments, ser. MLHPC ’16. IEEE Press, 2016, p. 18.

[26] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsifica-
tion for communication-efficient distributed optimization,” in Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[27] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[28] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” in International Conference on Learning
Representations Workshop Track, 2016. [Online]. Available: https:
//arxiv.org/abs/1604.00981

[29] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “Gpipe: Efficient training of
giant neural networks using pipeline parallelism,” 2019.

[30] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel dnn training,” 2018.

[31] S. Li and T. Hoefler, “Chimera: Efficiently Training Large-Scale Neural
Networks with Bidirectional Pipelines,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC21). ACM, Nov. 2021.

[32] B. Yang, J. Zhang, J. Li, C. Re, C. Aberger, and C. De Sa, “Pipemare:
Asynchronous pipeline parallel dnn training,” in Proceedings of Machine
Learning and Systems, A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3,
2021, pp. 269–296.

[33] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg,
and T. Hoefler, “Efficient Task Placement and Routing in Dragonfly
Networks ,” in Proceedings of the 23rd ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC’14).
ACM, Jun. 2014.

[34] M. Besta and T. Hoefler, “Slim Fly: A Cost Effective Low-Diameter Net-
work Topology,” Nov. 2014, proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis
(SC14).

[35] B. Prisacari, G. Rodriguez, C. Minkenberg, and T. Hoefler, “Bandwidth-
optimal All-to-all Exchanges in Fat Tree Networks,” in Proceedings of
the 27th International ACM Conference on International Conference on
Supercomputing. ACM, Jun. 2013, pp. 139–148.

[36] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture, 2008, pp. 77–88.

[37] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoe-
fler, “Cost-Effective Diameter-Two Topologies: Analysis and Evalua-
tion.” ACM, Nov. 2015, in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC15).

[38] F. T. Leighton, Introduction to parallel algorithms and architectures:
Arrays, trees, hypercubes. Elsevier, 1991.

[39] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990.

[40] “MLaaS in the wild: Workload analysis and scheduling in Large-
Scale heterogeneous GPU clusters,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22).
Renton, WA: USENIX Association, Apr. 2022. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/weng

[41] Alibaba, “Alibaba cluster trace program,” 2020, [Online; accessed
04-Mar-2022]. [Online]. Available: \url{https://github.com/alibaba/
clusterdata/blob/master/cluster-trace-gpu-v2020/README.md}

[42] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and
T. Hoefler, “An In-Depth Analysis of the Slingshot Interconnect,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC20), Nov. 2020.

[43] NVIDIA Corporation, “NVIDIA InfiniBand Adaptive Routing Technol-
ogy,” Tech. Rep. WP-10326-001 v01, 07 2020.

[44] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCPs Burstiness using
Flowlet Switching,” in 3rd ACM SIGCOMM Workshop on Hot Topics
in Networks (HotNets), San Diego, CA, November 2004.

[45] T. L. Rodeheffer, C. Thacker, A. Birrell, T. Rodeheffer, H. Murray,
M. Schroeder, E. Satterthwaite, R. Needham, M. Burrows, M. D.
Schroeder, and M. Schroeder, “Autonet: A high-speed, self-configuring
local area network using point-to-point links,” IEEE Journal on Select
Areas of Communication, vol. 9, October 1991.

[46] C. Glass and L. Ni, “The turn model for adaptive routing,” in Proceed-
ings the 19th Annual International Symposium on Computer Architec-
ture, 1992, pp. 278–287.

[47] H. Adalsteinsson, S. Cranford, D. A. Evensky, J. P. Kenny,
J. Mayo, A. Pinar, and C. L. Janssen, “A simulator for large-
scale parallel computer architectures,” Int. J. Distrib. Syst. Technol.,
vol. 1, no. 2, p. 5773, apr 2010. [Online]. Available: https:
//doi.org/10.4018/jdst.2010040104

[48] M. Barnett, R. Littlefield, D. Payne, and R. Vandegeijn, “Global
combine algorithms for 2-d meshes with wormhole routing,” J. Parallel
Distrib. Comput., vol. 24, no. 2, p. 191201, feb 1995. [Online].
Available: https://doi.org/10.1006/jpdc.1995.1018

[49] M. M. Bae, B. F. AlBdaiwi, and B. Bose, “Edge-disjoint hamiltonian
cycles in two-dimensional torus,” Int. J. Math. Math. Sci., vol.
2004, no. 25, pp. 1299–1308, 2004. [Online]. Available: https:
//doi.org/10.1155/S0161171204307325

[50] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter, “Blueconnect:
Decomposing all-reduce for deep learning on heterogeneous network
hierarchy,” IBM Journal of Research and Development, vol. 63, no. 6,
pp. 1:1–1:11, 2019.

[51] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, p. 4966, feb 2005. [Online]. Available:
https://doi.org/10.1177/1094342005051521

[52] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and Per-
formance Analysis of Non-Blocking Collective Operations for MPI,” in
Proceedings of the 2007 International Conference on High Performance
Computing, Networking, Storage and Analysis, SC07. IEEE Computer
Society/ACM, Nov. 2007.

[53] S. Rashidi, M. Denton, S. Sridharan, S. Srinivasan, A. Suresh, J. Nie, and
T. Krishna, Enabling Compute-Communication Overlap in Distributed

Deep Learning Training Platforms. IEEE Press, 2021, p. 540–553.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00049

[54] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and
B. Van Essen, “Aluminum: An asynchronous, gpu-aware communication
library optimized for large-scale training of deep neural networks on hpc
systems,” in 2018 IEEE/ACM Machine Learning in HPC Environments
(MLHPC), 2018, pp. 1–13.

[55] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of convolu-
tional networks,” 2017.

[56] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,
L. Shao, S. He, T. Karna, D. Moise, S. J. Pennycook, K. Maschoff,
J. Sewall, N. Kumar, S. Ho, M. Ringenburg, Prabhat, and V. Lee,
“Cosmoflow: Using deep learning to learn the universe at scale,” 2018.

[57] J. A. Yang, J. Park, S. Sridharan, and P. T. P. Tang, “Training deep learn-
ing recommendation model with quantized collective communications,”
in Conference on Knowledge Discovery and Data Mining (KDD), 2020.

[58] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

[59] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia et al., “The architectural
implications of facebook’s dnn-based personalized recommendation,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 488–501.

[60] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park et al., “Software-hardware co-design for fast
and scalable training of deep learning recommendation models,” arXiv
preprint arXiv:2104.05158, 2021.

[61] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[62] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

[63] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with
conditional computation and automatic sharding,” 2020. [Online].
Available: https://arxiv.org/abs/2006.16668

[64] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS High-Performance Interconnect,” in Proceedings of 18th Sym-
posium on High-Performance Interconnects (Hot Interconnects 2010).
IEEE, Aug. 2010.

[65] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-efficient
topology for high-radix networks,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, ser. ISCA ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
126–137. [Online]. Available: https://doi.org/10.1145/1250662.1250679

[66] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hy-
perx: topology, routing, and packaging of efficient large-scale networks,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 1–11.

[67] K. D. Underwood and E. Borch, “Exploiting communication
and packaging locality for cost-effective large scale networks,”
in Proceedings of the 26th ACM International Conference on
Supercomputing, ser. ICS ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 291300. [Online]. Available:
https://doi.org/10.1145/2304576.2304616

[68] B. Bode, M. Butler, T. Dunning, T. Hoefler, W. Kramer, W. Gropp, and
H. Wen-Mei, The blue waters super-system for super-science. CRC
Press, Jan. 2013, pp. 339–366.

[69] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A. Bright,
J. Brunheroto, C. Cascaval, J. Castanos, W. Chan, L. Ceze, P. Coteus,
S. Chatterjee, D. Chen, G. Chiu, T. Cipolla, P. Crumley, K. Desai,
A. Deutsch, T. Domany, M. Dombrowa, W. Donath, M. Eleftheriou,
C. Erway, J. Esch, B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain,
M. Giampapa, B. Gopalsamy, J. Gunnels, M. Gupta, F. Gustavson,
S. Hall, R. Haring, D. Heidel, P. Heidelberger, L. Herger, D. Hoenicke,
R. Jackson, T. Jamal-Eddine, G. Kopcsay, E. Krevat, M. Kurhekar,

A. Lanzetta, D. Lieber, L. Liu, M. Lu, M. Mendell, A. Misra, Y. Moatti,
L. Mok, J. Moreira, B. Nathanson, M. Newton, M. Ohmacht, A. Oliner,
V. Pandit, R. Pudota, R. Rand, R. Regan, B. Rubin, A. Ruehli, S. Rus,
R. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli, S. Singh,
P. Song, V. Srinivasan, B. Steinmacher-Burow, K. Strauss, C. Surovic,
R. Swetz, T. Takken, R. Tremaine, M. Tsao, A. Umamaheshwaran,
P. Verma, P. Vranas, T. Ward, M. Wazlowski, W. Barrett, C. Engel,
B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. Krolak, C. Li,
T. Liebsch, J. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram,
M. Tubbs, G. Ulsh, C. Wait, J. Wittrup, M. Bae, K. Dockser, L. Kissel,
M. Seager, J. Vetter, and K. Yates, “An overview of the bluegene/l super-
computer,” in SC ’02: Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, 2002, pp. 60–60.

[70] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon,
C. Young, and D. Patterson, “A domain-specific supercomputer for
training deep neural networks,” Commun. ACM, vol. 63, no. 7, p.
67–78, jun 2020. [Online]. Available: https://doi.org/10.1145/3360307

[71] Yuichiro Ajima, “High-dimensional Interconnect Technology for the K
Computer and the Supercomputer Fugaku,” Tech. Rep., 06 2019, fujitsu
Technical Review.

[72] T. T. Nguyen and M. Wahib, “An allreduce algorithm and network co-
design for large-scale training of distributed deep learning,” in 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), 2021, pp. 396–405.

[73] S. Wang, D. Li, Y. Cheng, J. Geng, Y. Wang, S. Wang, S. Xia,
and J. Wu, “A scalable, high-performance, and fault-tolerant network
architecture for distributed machine learning,” IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1752–1764, 2020.

[74] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit
quantum circuit,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3126908.3126947

[75] G. Kwasniewski, M. Kabic, T. Ben-Nun, A. N. Ziogas, J. E.
Saethre, A. Gaillard, T. Schneider, M. Besta, A. Kozhevnikov,
J. VandeVondele, and T. Hoefler, “On the parallel i/o optimality
of linear algebra kernels: Near-optimal matrix factorizations,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3476167

[76] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir, L. Levi,
A. Margolin, T. Ronen, A. Shpiner, O. Wertheim, and E. Zahavi,
“Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware
Architecture for Efficient Data Reduction,” in Proceedings of COM-
HPC 2016: 1st Workshop on Optimization of Communication in HPC
Runtime Systems - Held in conjunction with SC 2016: The International
Conference for High Performance Computing, Networking, Storage and
Analysis. Institute of Electrical and Electronics Engineers Inc., jan
2017, pp. 1–10.

[77] R. L. Graham, L. Levi, D. Burredy, G. Bloch, G. Shainer, D. Cho,
G. Elias, D. Klein, J. Ladd, O. Maor, A. Marelli, V. Petrov, E. Romlet,
Y. Qin, and I. Zemah, “Scalable Hierarchical Aggregation and Reduction
Protocol (SHARP)TM Streaming-Aggregation Hardware Design and
Evaluation,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 12151 LNCS. Springer, jun 2020, pp. 41–59.
[Online]. Available: https://doi.org/10.1007/978-3-030-50743-5 3

[78] D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and T. Hoefler, “Flare:
Flexible in-network allreduce,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’21, 2021.

[79] B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An In-Network Ar-
chitecture for Accelerating Shared-Memory Multiprocessor Collectives,”
2020.

[80] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” 2019. [Online].
Available: https://arxiv.org/abs/1910.02054

[81] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model
parallelism for deep neural networks,” 2018. [Online]. Available:
https://arxiv.org/abs/1807.05358

[82] T. Hoefler, M. C. Heddes, and J. R. Belk, “Distributed processing
architecture,” U.S. Patent US11 076 210B1, Jul., 2021.

[83] T. Hoefler, M. C. Heddes, D. Goel, and J. R. Belk, “Distributed
processing architecture,” U.S. Patent US20 210 209 460A1, Jul., 2021.

[84] S. Li, T. Ben-Nun, G. Nadiradze, S. D. Girolamo, N. Dryden, D. Alis-
tarh, and T. Hoefler, “Breaking (Global) Barriers in Parallel Stochastic
Optimization with Wait-Avoiding Group Averaging,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 32, no. 7, pp. 1725–
1739, 2021.

[85] S. Li and T. Hoefler, “Near-Optimal Sparse Allreduce for Distributed
Deep Learning,” in Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Apr. 2022.

[86] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and
T. Hoefler, “Red-Blue Pebbling Revisited: Near Optimal Parallel Matrix-
Matrix Multiplication,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC19), Nov. 2019.

[87] N. Dryden, N. Maruyama, T. Benson, T. Moon, M. Snir, and B. V.
Essen, “Improving strong-scaling of cnn training by exploiting finer-
grained parallelism,” 2019.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[89] “Swiss National Supercomputing Centre - CSCS,” https://www.cscs.ch/,
accessed: 30/03/2022.

APPENDIX

Section II provides a coarse overview of communications
in deep learning. Techniques for distributed and parallel deep
learning are a major target for innovation and thus numerous
approaches exist. Here, we provide some more background on
various aspects that would overload the main text but show
how most workloads can be mapped into the ring formulation
today.

Here, we focus on a brief overview of methods that lead to
different communication requirements instead of an exhaustive
list of all algorithms.

A. Data parallelism

a) Local SGD with weight averaging: only communicate
every k iterations to reduce the communication complex-
ity [21]–[24]. The communication sums all weights across all
data-parallel processes and has thus the same communication
pattern and volume as gradient summation. Some schemes
perform only reductions on subgroups of the processes in order
to reduce the communication volume further [84].

b) Gradient sparsification schemes: reduce the size of
the gradient data, typically by sending only the largest gradi-
ents while accumulating the remaining ones into local buffers
until they are large enough [18], [25]–[27]. This scheme
is often combined with full communication steps in regular
intervals. Reducing sparse gradients usually causes the vector
to grow at each step due to fill-in. However, algorithms
can be adapted to minimize the additional communication
volume [85].

c) Asynchronous SGD: performs weight updates asyn-
chronously. This does not change the communication pattern
in general but updates model copies independently [28].

B. Operator parallelism

Here, we discuss four typical operators: fully-connected
(FC), convolutional (CV), transformer (TF), and element-wise
(EL) operators. It is easy to see that EL operators require no
communication as they are independent, we will briefly discuss
all others in the following.

a) Fully-connected: FC operators are usually imple-
mented by matrix multiplication on batches of examples,
which may degenerate to matrix-vector multiplications for
single examples. Operator parallelism splits the activation
matrix into O pieces and performs a distributed matrix multi-
plication. The weight matrix can either be replicated at each
process or also be distributed. If it is replicated, then the
forward pass does not require any communication but the
backward pass needs to synchronize the weight update similar
to data-parallelism using a reduction. If the weight matrix
is also distributed, then a full parallel matrix multiplication
is performed. Communication-minimizing variants combine
broadcast and distributed reductions [86].

b) Convolutional: CV operators are defined on a spatial
domain and their parallelization follows a nearest-neighbor
scheme. The simplest distribution splits the activations in one
dimension, which leads to a nearest-neighbor communication
scheme. This scheme is often used in scientific computing
workloads for the processing of high-resolution data [56], [87].

c) Transformer: TF layers are among the largest layers
used in practical workloads. For example, GPT-3 [61] has 96
layers with 1.82 billion parameters each, resulting in 3.65GB
of weight-storage (16-bit floats). TF layers contain multiple
operations (e.g., matmul, softmax, add) [88]. They can be
distributed with the Megatron-LM [62] scheme that splits the
inputs and requires one broadcast and two reductions in both
the forward and backward pass.

d) Summary: All operator-parallel schemes can be ex-
pressed efficiently with nearest-neighbor communication or
broadcast and (all)reduce.

C. Example Topologies

1) Small cluster: We start with a small cluster design
connecting 1,024 accelerators. We compare three different fat
trees: nonblocking, 50% tapered, and 75% tapered, a full
bandwidth Dragonfly, and Hx2Mesh as well as Hx4Mesh
topologies. We also add a switchless 2D torus for comparison.

a) Nonblocking fat tree: We use a two-level fat tree
with 32 switches in the first and 16 switches in the second
layer to reach 1,024 accelerators. This topology has 1,024
DAC cables connecting the accelerators and 1,024 AoC cables
between the switches. We use 16 planes, one for each network
port per accelerator. The total number of switches for 1,024
accelerators is (32+16)*16=768, AoC cables = DAC cables =
16*1,024.

b) Tapered fat trees: We use two level fat trees and
implement tapering at the first level. For 50%, we use 25
switches in the first layer, each of which routes 42 ports to ac-
celerators and 22 ports to the second layer with 9 switches. A
total of 25*42=1,050 DAC cables connect to accelerators and
25*22=550 AoC cables connect to other switches. The total
number of switches for 1,050 accelerators is (25+9)*16=544.

For 75% tapering, we use 21 switches in the first level, each
with 51 ports to accelerators and 13 ports to the second layer
with 5 switches. A total of 21*51=1,071 DAC cables connect
to accelerators and 21*13=273 AoC cables connect to other

switches. The total number of switches for 1,071 accelerators
is (21+5)*16=416.

c) Dragonfly: We assume a canonical Dragonfly config-
uration for 64 port switches (a = 2p = 2h [36]): a group size
of a = 16 routers, p = 8 terminals per router, and h = 8
connections to other groups. This leads to a virtual switch
with 31 ports and we map two of those into a physical switch
with 64 ports. Each group has 128 terminals and 8 physical
switches (16 virtual). We use 8 groups to connect 1,024 end-
points. Each group has 16 virtual switches with 8 AoC cables
each connecting to other groups. This makes 8 groups*16
switches/group*8/2 cables per switch=512 AoC cables total.
Each group has 16 virtual switches with 8 endpoints each
and 15 connections to other virtual switches. One inter-switch
connection is internal to the physical switches. Thus, we have a
total of 2*14 DAC cables per physical switch to other switches
and 2*8 connections to endpoints per physical switch. With a
total of 64 physical switches, we have 64*(2*14/2+2*8)=1,920
DAC cables.

d) HxMesh: An Hx1Mesh would use x = y = 32 to
connect 32 ∗ 32 = 1, 024 terminals. Each board has two
connections per dimension (one for each direction) such that a
64-port switch can connect one row or column of boards. This
makes a total of 32+32 switches per plane. Each dimension
has a total of 2∗32∗32 = 64∗32 = 2, 048 cables to endpoints,
making a total of 2,048 DAC and 2,048 AoC cables per plane.
With four planes there are a total of 256 switches.

An Hx2Mesh would use x = y = 16 to connect 2 ∗ 2 ∗
16 ∗ 16 = 1, 024 terminals. Each board has four connections
per dimension (two per direction and two per row/column)
such that a 64-port switch can connect one row or column of
boards. This makes a total of 16+16=32 switches per plane.
Each dimension has a total of 4 ∗ 16 ∗ 16 = 16 ∗ 64 = 1024
cables to endpoints making a total of 1,024 DAC and 1,024
AoC cables per plane. With our four planes there are a total
of 128 switches.

An Hx4Mesh would use x = y = 8 to connect 42 ∗
82 = 1, 024 terminals. Each board has eight connections per
dimension such that a 64-port switch can connect one row or
column of boards. This makes a total of 8+8=16 switches per
plane. Each dimension has a total of 8 ∗ 64 = 512 cables to
endpoints making a total of 512 DAC and 512 AoC cables per
plane. With our four planes there are a total of 64 switches.

e) 2D torus: The 2D torus would be 32x32. With 2x2
PCB boards, there would be 16x16 boards to connect. Each
board has 4 DAC connections (2 cables) in each dimension,
making a total of 2 ∗ 4/2 ∗ 16 ∗ 16 = 1, 024 DAC cables total.

2) Large cluster:
a) Fat tree: A nonblocking fat tree would need three

levels to connect 16,384 nodes — the first two levels have
512 switches each and the third level would have 256 switches.
The endpoints are attached with 16,384 DAC cables and the
switches are connected with 2 ∗ 16384 AoC cables. There are
16 planes.

The 50% and 75% tapered trees would be constructed sim-
ilarly to the scheme above - the lowest level would route only

22 and 13 ports per switch to the second level, respectively.
This requires a total of 794 switches, 17,160 AoC, and 16,380
DAC cables for 50% and 8,304 switches, 8372 AoC, and
16,422 DAC cables for 75% tapering for each of the 16 planes.

b) Dragonfly: We use a configuration wit a=32, p=17,
h=16 that supports up to 279,072 terminals. We use 30 groups
to construct a network with 16,320 terminals. Each plane uses
30*32=960 switches, 30*(17*32+31*32/2)=31,200 DAC, and
30*16*32/2=7,680 AoC cables

c) HxMesh: An Hx1Mesh would use x = y = 128
to connect 128 ∗ 128 = 16, 384 terminals. Both dimensions
require fat trees of size 256 (two ports per direction). We
construct such fat trees with eight switches in the first layer
and four switches in the second, twelve total. The x direction
requires 2*128*12=3,072 switches, the y direction is analo-
gous. This makes a total of 128 ∗ 2 ∗ 12=3,072 switches per
plane. One dimension can connect to the fat trees with DAC,
there are a total of 2 ∗ 128 ∗ 128 = 32, 768 such links. The
second level of the fat tree has the same number of AoC links.
The other dimension’s fat tree has twice the number of AoC
links. Since each plane consumes four ports (E, W, S, N), there
are four planes for a total of 24,576 switches.

The Hx2Mesh is a relatively expensive version because each
accelerator is connected to two trees per plane.

An Hx2Mesh would use x = y = 64 to connect 2 ∗ 2 ∗
64 ∗ 64 = 16, 384 terminals. Both dimensions require fat trees
of size 128 (two ports per direction). We construct such fat
trees with four switches in the first layer and two switches
in the second, six total. The x direction requires 2*64*6=768
switches, the y direction is analogous. This makes a total of
2 ∗ 64 ∗ 2 ∗ 6=1,536 switches per plane. One dimension can
connect to the fat trees with DAC, there are a total of 2 ∗
64∗128 = 16, 384 such links. The second level of the fat tree
has the same number of AoC links. The other dimension’s fat
tree has twice the number. Since each plane consumes four
ports (E, W, S, N), there are four planes for a total of 6,144
switches.

The Hx2Mesh is a relatively expensive version because each
accelerator is connected to two trees per plane.

We note that another configuration where 2-level fat trees of
size 2,048 are used to connect blocks of 16 rows and columns
can lead to a higher global bandwidth at the same cost.

An Hx4Mesh would use x = y = 32 to connect 4 ∗ 4 ∗
32 ∗ 32 = 16, 384 terminals. Both directions can be connected
by a single switch with 4 switches per board per direction.
Each board column in x direction has 64 ports, there are
4 switch columns per board, and 32 boards. Thus, the x
direction is connected with 32*4*64=8,192 DAC cables and
the y direction with the same number of AoC cables. This
makes a total of 2 ∗ 32 ∗ 4=256 switches per plane, and a total
of 1,024 switches for all four planes.

D. Disjoint Pipelined Rings

As discussed in Section V-A2, the allreduce can use at the
same time all the four network interfaces of the accelerator, if
implemented through two bidirectional pipelined rings mapped

onto edge disjoint Hamiltonian cycles. To compute the two
disjoint Hamiltonian cycle we used an existing algorithm [49]
that works for 2D torus4 of size r× c, where r is the number
of rows, and c the number of columns, if and only if r =
c · k k ≥ 1 and GCD(r, c− 1) = 1.

1 def getf(X, ring):
2 x1, x0 = (int(X / c), X %
3 if ring == "red":
4 return (x1 %
5 else:
6 return ((x0 + (c - 1) * x1) %
7

8 # Returns the coordinates of the neighbors for
9 # the node in position <row, col> on the ring

10 # 'ring' (either 'red' or 'green')
11 def getNeighRing(row, col, ring):
12 X = -1
13 for i in range(c*r):
14 frow, fcol = getf(i, ring)
15 if (frow == row) and (fcol == col):
16 X = i
17 break
18 X_left = (X - 1) %
19 X_right = (X + 1) %
20 return getf(X_left, ring), getf(X_right, ring)

Listing 1: Disjoint rings generation for a r × c 2D torus.

We describe the algorithm through Python code in Listing
1. Interest readers can find a formal definition with correctness
proofs in the paper describing the algorithm [49]. The function
getf of the algorithm (line 1) maps an identifier X (between
0 and the number of nodes in the torus) to a pair of coordinates
on the torus. These identifiers are not assigned by a row
major or column major order, and are uniquely identified by
the getf function. Different mappings are used on the two
different rings (that we denote with red and green). To find the
neighbors of a specific node at coordinates <row, col>, the
algorithm first finds the X that is mapped to those coordinates
(lines 13-17). Eventually, it computes the identifiers of the
nodes on the left and on the right on the ring (lines 18-19),
and their coordinates on the torus (lines 20-21).

We also report in Figure 16 the obtained disjoint rings for
2D torus of size 4x4, 8x4, 9x3, and 16x8. We observe that
each node has two ports on each of the two rings, and that
communications only occur between neighboring nodes. This
allows each node to fully utilize all the available network
interfaces.

E. Pricing Details

We sourced our pricing information on 3/25/22
on colfaxdirect.com for 100 Gb/s equipment. We
assume that the relative prices are representative for
future 400 Gb/s switches and cables. For the 64-
port switches we chose Edgecore AS7816-64x 100G
(https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct
=3592) at $14,280 per piece. For 20m AoC cables, we
picked Mellanox VCSEL-Based Active Fiber CableMellanox

4An HxMesh can be seen as a 2D torus with additional links between
boards.

4x4 8x4

9x3 16x8

Fig. 16: Example of disjoint Hamiltonian cycles in 4x4, 8x4,
9x3, and 16x8 networks.

VCSEL-Based Active Fiber Cables at $603 per piece
(https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct
=2892). For 5m DAC cables, we picked Mel-
lanox Passive Copper Cable at $272 per piece
(https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct
=3546).

F. Simulation Setup
The Structural Simulation Toolkit (SST) version 11.1.0 has

been used for the entirity of this paper. The most important
simulation parameters are shown in Table III. Notably, all
simulations have been run using the eager protocol since
rendezvous suffers from some critical bugs when using certain
SST elements that are needed in our simulations.

The simulations have been run on various clusters with most
of them running on:
• SlimFly cluster: An experimental internal cluster run in

collaboration with CSCS [89] composed of 192 nodes.
• Ault: A small cluster also run by CSCS. 8 nodes at a

given time where used in this cluster.
All the benchmarks are completely automated and can be

run from the appropriate folder where a readME file has been
provided with the appropriate instructions.

The best routing available in SST for each topology has been
used when running the simulations (UGAL-L for Dragonfly,
the routing described in Section IV-C for HammingMesh and
adaptive for the other topologies.)

G. Additional Results
In this section we present some additional results. In

particular we want to show the allreduce results also for

Parameter Value
Packet Size 8192 B
Flit Size 256 B
Buffer Sizes Per Port 32 MB
Link Latency 20 ns
Link Latency Hx Boards 1 ns
In/Output Buffer Latency 40 ns
Link BW
Simulating One Plane 400 Gb/s

Link BW
Simulating All Planes 1600 Gb/s

Cross Bar BW
Simulating One Plane 800 Gb/s

NIC BW
Simulating All Planes 3200 Gb/s

Link BW
Simulating One Plane 400 Gb/s

Link BW
Simulating All Planes 1600 Gb/s

Number of Send Machines 4

TABLE III: Main parameters used in SST when running the
simulations.

the small topologies. We still use both the two bidirectional
rings (“rings”) as well as the two-dimensional torus (“torus”)
algorithm. As we can see the results are consistent with
what we obtained with the large topologies in Section V-A.
Figure 17 shows the achieved bandwidths.

Fig. 17: Global allreduce using different algorithms.

