
Noise in the Clouds: Influence of Network
Performance Variability on Application Scalability

Daniele De Sensi, Tiziano De Matteis, Konstantin Taranov,
Salvatore Di Girolamo, Tobias Rahn, and Torsten Hoefler

Department of Computer Science, ETH Zurich, Switzerland
{first-name.last-name}@inf.ethz.ch

Abstract—Cloud computing represents an appealing oppor-
tunity for cost-effective deployment of HPC workloads on the
best-fitting hardware. However, although cloud and on-premise
HPC systems offer similar computational resources, their net-
work architecture and performance may differ significantly. For
example, these systems use fundamentally different network
transport and routing protocols, which may introduce network
noise that can eventually limit the application scaling. This
work analyzes network performance, scalability, and cost of
running HPC workloads on cloud systems. First, we consider
latency, bandwidth, and collective communication patterns in
detailed small-scale measurements, and then we simulate network
performance at a larger scale. We validate our approach on
four popular cloud providers and three on-premise HPC systems,
showing that network (and also OS) noise can significantly impact
performance and cost both at small and large scale.

Index Terms—cloud; HPC; network noise; scalability;

I. INTRODUCTION

Due to flexibility and cost-effectiveness, running HPC ap-
plications in the cloud has become an appealing solution and a
potential alternative to on-premise systems [1], [2]. Scientific
applications from different domains already run on the cloud,
including multiphysics simulations [3], [4] and biomedical
applications [5], [6].

One of the main advantages of cloud computing is the
possibility to run an application on the most appropriate
computational resources in a cost-effective way. Instances
that can be deployed in the cloud come with a wide variety
of architectural characteristics in terms of memory, CPUs,
accelerators, and network bandwidth. On the CPU side, it is
possible to select between different processors, with different
numbers of cores, clock frequency, and architecture, ranging
from commercial off-the-shelf Intel and AMD processors to
custom ARM processors like the ARM Graviton processor
deployed by AWS [7]. Cloud providers also offer a wide
choice of accelerators that includes different types and gener-
ations of GPUs [8], TPUs (Tensor Processing Units) [9], and
FPGAs [10]. Similarly, different instances provide different
network bandwidths. Users can deploy instances with 100 Gb/s
networks on most major cloud providers and, in some cases,
even 200 Gb/s and 400 Gb/s instances (on Azure and AWS,
respectively). Finally, cloud vendors frequently deploy new
hardware, differently from on-premise HPC systems, where
compute resources have life-cycles spanning multiple years.

However, all this flexibility comes at a cost. Although we
can expect minor differences in the compute performance
between an HPC instance in the cloud and an equivalent
server in an on-premise HPC system [11], [12], the network
performance can significantly differ. Indeed, in some cases,
the network connecting those instances in the cloud signifi-
cantly differs from a traditional HPC network. For example,
packets might be routed using ECMP [13], [14], [15] in a
congestion-oblivious way, and can thus experience a higher
latency if multiple network flows are mapped on the same
paths [16], [17], [18]. On the contrary, HPC systems often
deploy adaptive routing to react more promptly to congestion
in the network [19], [20]. Also, differently from most HPC
systems, some providers do not use Remote Direct Memory
Access (RDMA), or run instances on tapered networks [15].
All these factors can contribute to increase network latency,
decrease network bandwidth, and increase network noise [21],
[22], [23], [24], [25] (i.e., performance variability induced by
the use of the network). This limits the scalability and tampers
cost-effectiveness. Although HPC applications can scale up
to 42 million cores [26] on on-premise HPC systems, it is
still not clear how far HPC applications could scale on the
cloud. Traditionally, cloud environments have been considered
a good match for loosely coupled or embarrassingly parallel
workloads, but network performance has been seen as one
of the main bottlenecks preventing their adoption for tightly
coupled computations [27], [11], [28], [29], [30], [31].

Assessing the network performance and the impact of noise
on scalability is even more relevant if we consider that the
gap between compute and network performance increases. For
example, from 2010 to 2018, the computational throughput of
the Top 500 HPC systems [32] increased by 65x, while the off-
node communication bandwidth only increased by 4.8x [33],
[34]. Thus we expect, in the future, network performance to
be even more relevant for HPC applications running on the
cloud.

In this work, we focus on network performance and noise,
assessing the impact on performance, scalability, and cost of
tightly-coupled HPC communication patterns at scale. Because
collecting statistically sound measurements at the scale of
thousands of HPC VMs would be too expensive (and on some
cloud providers not even feasible), we first perform detailed
network performance and noise measurement at small scale.

ar
X

iv
:2

21
0.

15
31

5v
2

 [
cs

.D
C

]
 1

 N
ov

 2
02

2

TABLE I
ANALYZED SYSTEMS: FOR EACH OF THEM WE DETAIL THE CPU, MEMORY AND NETWORK CHARACTERISTICS. C INDICATES THE NUMBER OF PHYSICAL

CORES. INSTANCE COSTS AS REFERRED TO THE JULY, 18 2022 FOR THE EAST US AVAILABILITY ZONE.

SYSTEM
INSTANCE

TYPE
CPU MEMORY

PER HOUR
INSTANCE COST
(COMMITTED)

PER HOUR
INSTANCE COST
(ON-DEMAND)

BANDWIDTH NETWORK ROUTING
TRANSPORT

PROTOCOL

A
W

S

Normal c5.18xlarge
2x18C

Intel Xeon Platinum
8124M @ 3GHz

144 GB 1.34 USD 3.06 USD 25 Gb/s Fat Tree [14] ECMP [14] SRD [14]

HPC (Metal) c5n.metal
2x18C

Intel Xeon Platinum
8124M @ 3GHz

192 GB 1.475 USD 3.88 USD 100 Gb/s Fat Tree [14] ECMP [14] SRD [14]

HPC c5n.18xlarge
2x18C

Intel Xeon Platinum
8124M @ 3GHz

192 GB 1.475 USD 3.88 USD 100 Gb/s Fat Tree [14] ECMP [14] SRD [14]

A
Z

U
R

E

Normal F72s v2
36C

Intel Xeon Platinum
8370C/8272CL/8168

144 GB 1.116 USD 3.045 USD 30 Gb/s Fat Tree [35] ECMP [35] N.A.

HPC HC44rs
2x22C

Intel Xeon Platinum
8168 @ 2.70GHz

352 GB 2.218 USD 3.168 USD 100 Gb/s Non-Blocking
Fat Tree [36]

Static/
Adaptive [37] InfiniBand [36]

HPC (200 Gb/s) HB120rs v2
2x60C

AMD Epyc
7V12 @ 2.45 GHz

456 GB 1.8 USD 3.6 USD 200 Gb/s Non-Blocking
Fat Tree [36]

Static/
Adaptive [37] InfiniBand [36]

G
C

P

Normal c2-standard-60
2x15C

Intel Cascade Lake
@ 3.10GHz

240 GB 1.25 USD 3.1321 USD 32 Gb/s
Jupiter

(3:1 Blocking
Fat Tree) [15]

ECMP [15] TCP/IP +
Intel QuickData [38]

HPC c2-standard-60
2x15C

Intel Cascade Lake
@ 3.10GHz

240 GB 2.148 USD 4.03 USD 100 Gb/s
Jupiter

(3:1 Blocking
Fat Tree) [15]

ECMP [15] TCP/IP +
Intel QuickData [38]

O
R

A
C

L
E

Normal VM.Optimized3.Flex
18C

Intel Xeon Gold
6354 @ 3GHz

256 GB N.A. 1.188 USD 40 Gb/s Non-Blocking
Fat Tree [39] N.A. N.A.

HPC (Metal) BM.Optimized3.36
2x18C

Intel Xeon Gold
6354 @ 3GHz

512 GB N.A. 2.712 USD 100 Gb/s Non-Blocking
Fat Tree [39] N.A. RoCEv2 [40]

D
A

IN
T

HPC (Metal) -
2x18C

Intel Xeon
E5-2695 v4 @ 2.10GHz

64 GB 1.02 USD [41] 1.73 USD [41] 82 Gb/s Cray Aries
(Dragonfly) [42]

Per-Packet
Adaptive [42] FMA [42]

A
L

P
S

HPC (Metal) -
2x64C

AMD EPYC
7742 @ 2.25GHz

256 GB N.A. N.A. 100 Gb/s HPE Cray Slingshot
(Dragonfly) [19]

Per-Packet
Adaptive [19] RoCEv2 [19]

D
E

E
P

-E
S

T

HPC (Metal) -
2x12C

Intel Xeon Gold
6146 @ 3.20GHz

192 GB N.A. N.A. 100 Gb/s
Mellanox

InfiniBand EDR
(Fat Tree) [43]

Static/
Adaptive Infiniband [43]

On one side, we analyze this data to spotlight differences in
network performance and noise between different cloud and
on-premise HPC systems. On the other side, we use this data to
calibrate the LogGOPSim simulator [44], [45], and to simulate
the scalability and cost at a larger scale (up to 16K HPC VMs).

We define the concepts of latency noise and bandwidth
noise, and assess the network performance and its impact on
scalability of HPC and normal instances of four major cloud
providers and of three on-premise systems (with different net-
work technology). We also assess OS noise (i.e., performance
variability introduced by OS processes), and we show how
different type of noise impact application performance and cost
both at small and large scale, for both latency- and bandwidth-
dominated communication patterns.

We describe in Sec. II the main characteristics of HPC cloud
solutions, in Sec. III we analyze the network performance of
both cloud and on-premise HPC systems, with a focus on OS
and network noise in Sec. IV. Then, we simulate how noise
affects performance at scale in Sec. V, and discuss related
work in Sec. VII. Eventually, Sec. VIII draws conclusions.

II. HPC IN THE CLOUD

In this section we measure and analyze the network per-
formance of HPC systems in the cloud at a small scale, to
understand better some peculiarities and limitations of those
systems. In this paper, we analyze four of the major cloud
providers: Amazon AWS [46], Google GCP [47], Microsoft
Azure [48], and Oracle Cloud [49]. We also analyze three on-
premise HPC systems: Piz Daint [50] (referred as Daint in the
following) and Alps [51], both deployed at the Swiss National
Supercomputing Centre, and DEEP-EST [43], deployed at the
Jülich Supercomputing Centre. We analyze cloud instances
of different types, including HPC instances (with different
network bandwidth) and normal compute instances. We outline
the different analyzed systems, instance types, and their main
characteristics in Table I. In the following we analyze in detail
the different instance types (Sec. II-A), their network features
(Sec. II-B), and their cost (Sec. II-C).

A. Instances, CPUs, and OS

In the following, with the term HPC instances, we refer
to those instances providing at least 100 Gb/s networking.

For AWS, we evaluate both bare-metal and non bare-metal
HPC instances. Azure and GCP provide only non bare-metal
HPC instances, whereas Oracle only provides bare-metal HPC
instances. To have a fair comparison, we selected instance
types with similar CPUs when possible. We used Intel CPUs
on all the cloud instances except for the 200 Gb/s instances
of Azure, which only have AMD EPYC CPUs. For normal
instances, we selected those that provide a similar network
bandwidth and core count. For completeness, we also report
the amount of RAM memory on each instance type.

All four providers guarantee that HPC instances are run
on separate physical servers. For the normal instances we
selected CPUs with a high core count to have them allocated
on two separate servers. This is necessary to ensure that when
measuring network performance the two VMs are actually
using the network. For the cloud providers we report in the
Instance Type column the name of the instances we used.

On all cloud providers, we use the virtual machine (VM)
images and operating system suggested for the HPC instances.
These were: Amazon Linux 2 on AWS [52], CentOS 7.7 on
Azure [53], CentOS 7.9 on GCP [54], and Oracle Linux 7.9 on
Oracle. Daint and Alps run a Cray Linux Environment (CLE)
OS based on SUSE Linux Enterprise Server v15.2, and DEEP-
EST runs Rocky Linux v8.5.

B. Network

The four cloud providers and the DEEP-EST system deploy
a fat tree topology. According to the most recent documenta-
tion we found, Azure, Oracle, and DEEP-EST deploy a non-
blocking network [36], [55], GCP a 3:1 blocking network [15],
whereas we did not find any additional detail on network
over- or under-provisioning for AWS. Both AWS and GCP use
ECMP routing [13], Azure employs adaptive routing [37] for
HPC instances, and for Oracle we did not find any information
on routing. The routing protocol plays a crucial role in network
performance. For example, ECMP is congestion oblivious and
might suffer from flow collisions [16], [17], [18], increasing
the network bandwidth variability (see Sec. IV-C). Daint and
Alps deploy a dragonfly interconnect (Cray Aries [42] and
Slingshot [19] respectively) with adaptive routing.

Each of the evaluated cloud providers uses a different
transport protocol. AWS provides its proprietary RDMA-
like protocol called SRD (Scalable Reliable Datagram) [14],
which resembles in some aspects InfiniBand verbs [56]. It
provides reliable out-of-order delivery of packets and uses a
custom congestion control protocol. The AWS Nitro Card [57]
implements the reliability layer, and the Elastic Fabric Adapter
(EFA) provides OS-bypass capabilities. To react to congestion,
SRD monitors the round trip time (RTT) and forces packets to
be routed differently by changing some of the fields used by
ECMP to select the path. This approach is probabilistic and
might allow avoiding congested paths, but, differently than
truly adaptive routing, it does not allow selecting the least
congested path nor any specific path.

Azure and DEEP-EST use RDMA through InfiniBand [36],
Oracle uses RDMA over Converged Ethernet (RoCEv2) [40],

whereas GCP does not use RDMA and relies on TCP/IP.
To minimize data movement overheads, GCP uses Intel’s
QuickData DMA Engines [58] to offload payload copies of
larger packets. Daint uses a proprietary RDMA protocol [42]
(FMA), whereas Alps uses RoCEv2 [19].

C. Cost

Table I shows the per-hour cost charged to the user as
of July 18, 2022. For the cloud systems, we report the cost
for the East US availability zone. We consider both the cost
for a committed 3-years usage with upfront payment and the
on-demand cost without any minimum commitment. Please
note that 3-years is the maximum commitment allowed on
those providers (and that leads to the lowest per-hour cost),
whereas when having no commitments we have the highest
per-hour cost. For Daint, we report the cost for a minimum
usage of 10, 000 compute hours, as well as the on demand
cost, both for non-academic partners. Academic partners have
discounted rates and this would otherwise lead to an unfair
comparison. For Alps and DEEP-EST there is no publicly
available information on the per-hour cost.

On AWS, the main difference between the normal and
HPC instances we selected is the support for Elastic Fabric
Adapter (EFA), which provides the 100 Gb/s networking.
Thus, we can estimate the 3-years committed cost of the
high-performance networks at around 0.135 USD per hour
per VM, and an on-demand cost of 0.82 USD. Similarly, we
selected the same instance type for normal and HPC instances
on GCP. The only difference is that we enabled the so-called
Tier 1 network on the HPC instance, which provides 100 Gb/s
network bandwidth. On GCP, we can thus estimate the cost of
the HPC network at around 0.9 USD per hour per VM [59]
(both for the committed and on-demand cost). Unfortunately,
Azure and Oracle do not provide the same instance in HPC
and non-HPC flavors, and it is thus not possible to isolate the
cost of the HPC network from the rest. Also, we observe that
whereas the on-demand cost of 100 Gb/s instances is lower
than the cost of 200Gb/s instances, this is not true for the
3-years committed usage. Indeed, at the time of the writing,
committing for a 3-years usage led to a 30% discount for 100
Gb/s instances, and to a 50% discount for the 200Gb/s ones.

III. NETWORK PERFORMANCE

We measure network performance using the Netgauge
tool [60], that provides detailed, sample-by-sample measure-
ments (fundamental for estimating network noise in Sec. IV).
We used the Message Passing Interface (MPI) backend and, on
each system, the MPI library recommended by the provider1.

a) Methods: We created an account on each provider,
and used our own funding and/or academic credits, without
coordinating with the providers. The clusters have been cre-
ated and tuned following the guidelines publicly available

1On Azure we used HPC-X v2.8.3 on HPC instances and Open MPI
v4.1.2 on normal instances. We used Open MPI v4.1.1 on AWS, Intel MPI
v2018.4.274 on GCP, Open MPI v4.0.4 on Oracle, Cray MPICH v7.7.18 on
Daint, Cray MPICH v8.1.12 on Alps, and Open MPI v4.1.3 on DEEP-EST.

1B 16B 256B 4KiB 64KiB 1MiB 16MiB
Message Size

0

20

40

60

80

100
B
a
n
d
w

id
th

 (
G

b
/s

)

AWS

1B 16B 256B 4KiB 64KiB

0

20

40

R
TT

/2
 (

u
s)

1B 16B 256B 4KiB 64KiB 1MiB 16MiB
Message Size

GCP

1B 16B 256B 4KiB 64KiB

0

20

40

R
TT

/2
 (

u
s)

Concurrent Communications
1 2 4 8 16

Fig. 1. Bandwidth for HPC instances as a function of message size and number of concurrent connections between the two servers. Inner plots show RTT/2
for small messages.

in the documentation of the cloud providers. After running
the benchmarks, we contacted the leads of the cloud busi-
ness of each of the providers, sharing a draft of the paper
with them. They assessed the correctness of our evalua-
tion, and we integrated their feedback in the paper. Only
in one case we improved the performance by applying a
technique not described in the publicly available documen-
tation, that we describe in the text (see the comment about
the FI_EFA_TX_MIN_CREDITS in Sec. III-A). On all the
providers, if not specified otherwise, we allocated the two VMs
(or the two servers) on the same rack. The only exception
is Oracle, where it is not possible to explicitly control the
allocation. We analyze in detail the impact of allocation on
performance and noise in Sec. IV.

A. Bandwidth Saturation
All the four analyzed cloud providers claim a 100 Gb/s

bandwidth on Intel-based HPC instances. However, this is true
only under certain conditions. For example, AWS documents
a maximum per-message bandwidth of 25Gb/s [61]. Even if
not explicitly documented, we observed similar limitations on
GCP. One possible reason justifying this behavior is that even
if the instance exposes a single 100 Gb/s NIC, it might be
equipped with multiple 25Gb/s NICs (or a multi-port NIC).
While some providers explicitly documented this for non-HPC
instances, the specific configuration is often unclear for HPC
ones.

For this reason, we can expect a higher bandwidth when
sending a message over multiple connections. To assess if this
is the case, we run a ping-pong benchmark between two nodes.
We establish multiple concurrent connections between the two
nodes, by running multiple processes per node and letting each
pair of processes send/receive disjoint parts of the message.
For example, a 16MiB pingpong with 16 processes per node
runs 16 concurrent ping-pongs between 16 processes on the
first node and 16 processes on the second node, each with a
1MiB message.

We report the results of this experiment for AWS and GCP
in Figure 1. We report the bandwidth as the message size
divided by half the round trip time (RTT/2), and the inner plots

show the RTT/2 for small messages. Each point in the plot is
the average over 1000 runs, whereas the band around the point
represents the standard deviation. We do not report the results
for the other systems since they can saturate the bandwidth
even with a single connection (we show results in the next
section). On AWS we increased the bandwidth by increasing
the maximum number of in-flight packets to 1024 (by setting
the FI_EFA_TX_MIN_CREDITS environment variable).

On both AWS and GCP the bandwidth increases when
increasing the number of concurrent communications (up to
80Gb/s with 16 processes per node). Also, when using a
single connection, the bandwidth drops for messages larger
than 4MiB. This is caused by a more-than-linear increase in
last level cache (LLC) misses, that we measured by using the
perf tool. For example, on AWS, we observe a 4× increase
in LLC misses when going from 1MiB to 4MiB messages, but
a 8× increase when moving from 4MiB to 16MiB messages.
This effect is not present when using more concurrent com-
munications because the message is split among the processes,
each transmitting a smaller message.

We also observe that having more processes per node
increases the RTT of small messages, due to additional
overhead and contention on the NIC access. For this reason,
only large messages should be sent with multiple concurrent
connections. Instead of having more processes sending a part
of the message each, we could have a single process sending
multiple smaller messages. For example, some MPI libraries
provide the possibility to stripe messages transparently over
multiple connections (e.g., by using the btl_tcp_links
command line flag on Open MPI [62]). However, we did not
observe any performance improvement compared to the single
connection case.

Observation 1: On AWS and GCP, the peak bandwidth
on a single connection is 50Gb/s and 30Gb/s respectively.
A bandwidth of 80Gb/s can only be reached by forcing
messages to be concurrently sent/received by/from multi-
ple processes on different connections.

1B 16B 256B 4KiB 64KiB 1MiB 16MiB
Message Size

0

20

40

60

80

100

Ba
nd

wi
dt

h
(G

b/
s)

1B 16B 256B
0

10

20

30

RT
T/

2
(u

s)

AWS
Azure

GCP
Oracle

Alps
Daint

DEEP-EST

Fig. 2. Unidirectional bandwidth on different providers as a function of the message size. Inner plots show RTT/2 for small messages. For AWS and GCP
we report the results with optimal number of connections (1 for minimizing RTT/2 for small messages, and 16 for maximizing bandwidth on large messages).

B. Unidirectional Bandwidth and Latency

Figure 2 shows the RTT/2 and bandwidth of different
providers as a function of the message size. For the cloud
providers we selected the 100 Gb/s instances (bare-metal when
available). For AWS and GCP, we report the RTT results with
a single connection (lowest RTT on small messages), and for
bandwidth, the results with 16 concurrent connections (highest
bandwidth on large messages).

Regarding the latency (i.e., the RTT/2 for 1 byte messages),
we observe that Azure, Oracle, and the on-premise systems
exhibit a 1-2 microseconds latency for HPC instances. On
the other hand, both AWS and GCP are characterized by
much higher latencies (20 and 10 microseconds respectively).
Concerning the bandwidth, Azure, Oracle, Alps, and DEEP-
EST achieve a bandwidth higher than 90 Gb/s for 16MiB
messages. On Daint, we measured 75 Gb/s peak bandwidth for
16MiB messages (NICs on Daint have an injection bandwidth
of 82 Gb/s [42]). AWS and GCP reach a peak bandwidth
of circa 70 Gb/s (using 16 concurrent connections). Oracle
achieves the 90% of the declared bandwidth with 256KiB
messages, Alps, Azure and DEEP-EST with 2MiB messages,
Daint with 4MiB messages, and AWS and GCP only achieve
the 70% of the declared bandwidth with 16MiB messages.

Observation 2: Azure and Oracle achieve network
latency and bandwdith comparable to that of on-premise
HPC systems. On the other hand, GCP and AWS achieve
25% lower bandwidth and 10x higher latency.

C. Bidirectional Bandwidth

To measure the bidirectional bandwidth, we perform two
simultaneous ping-pongs between two nodes, with each ping-
pong starting from a different node. In Figure 3, we report the
results of this experiment, and we compare the peak unidirec-
tional and bidirectional bandwidth with 16MiB messages. For

AWS Azure GCP Oracle Alps Daint DEEP-EST

0

25

50

75

100

B
a
n
d
w

id
th

 (
G

b
/s

)

Unidirectional
Bidirectional

Fig. 3. Peak unidirectional and bidirectional bandwidth.

both AWS and GCP, we use 16 concurrent connections. In
some cases, we observe a peak bidirectional bandwidth lower
than the peak unidirectional bandwidth. For example, on Daint
this is caused by message requests and responses sharing the
same data path, decreasing the peak theoretical bandwidth per
direction to 64 Gb/s [42].

1000ms 800ms 600ms 400ms 200ms 0ms
Inter-Message Interval

0.5

1.0

1.5

RT
T/

2
(1

M
iB

 m
sg

s)

Fig. 4. Distribution of RTT/2 (ms) of 1MiB transfers on GCP HPC instances,
for different inter-message intervals.

D. Traffic Burstiness

We now investigate the impact of traffic burstiness on
network performance. To assess this, we execute a 1MiB ping-
pong between two nodes, varying the inter-message interval,

1B 256B 64KiB 16MiB
Message Size

0

20

40

60

B
a
n
d
w

id
th

 (
G

b
/s

)

AWS

1B 16B 256B

15

20

25

30

R
TT

/2
 (

u
s)

1B 256B 64KiB 16MiB
Message Size

0

50

100

150

200

B
a
n
d
w

id
th

 (
G

b
/s

)

Azure

1B 16B 256B

0

10

20

30

40

R
TT

/2
 (

u
s)

1B 256B 64KiB 16MiB
Message Size

0

20

40

60

B
a
n
d
w

id
th

 (
G

b
/s

)

GCP

1B 16B 256B

10

15

20

25

R
TT

/2
 (

u
s)

1B 256B 64KiB 16MiB
Message Size

0

25

50

75

100

B
a
n
d
w

id
th

 (
G

b
/s

)

Oracle

1B 16B 256B

0

10

20

30

40

R
TT

/2
 (

u
s)

Normal HPC HPC (Metal) HPC (200 Gb/s)

Fig. 5. Unidirectional bandwidth for the different instance types described in Table I, organized by provider. Inner plots show the RTT/2 for small messages.
Note that each plot uses a different scale.

i.e., the time between two subsequent message transmissions
between 0 and 1 second. To exclude any pipelining effect,
the benchmark waits for a message to be completely received
before sending the next one. We repeat each experiment for
20 iterations, with 10 warm-up iterations. We did not observe
any impact of burstiness on the performance, except for GCP,
for which we report the results in Figure 4. We show on the
X axis the interval between two subsequent messages, and on
the Y axis the RTT/2 (milliseconds).

We observe how, when the time interval between subsequent
messages is one second, a 1MiB message requires around
1.5 milliseconds to be transferred from the source to the
destination. On the other hand, when we decrease the inter-
message interval, the RTT starts decreasing, and, eventually,
the RTT/2 becomes lower than 0.5 milliseconds. We observed
this behavior consistently in multiple runs, in different days,
and at different times of the day.

Our initial assumption was that this could be related to
the Andromeda network virtualization stack, used by GCP
for forwarding packets over the network [38]. To scale on
very large networks, and avoid storing thousands of VM-
to-VM forwarding rules on each VM, the Andromeda VM
host stack sends all the packets for which it does not have
a route to Hoverboard gateways. If the Andromeda control
plane detects that a flow exceeded some bandwidth usage
threshold, it installs direct VM-to-VM forwarding rules in the
VM host stack, so that high-bandwidth flows are forwarded
directly to the destination VM without the need to traverse the
Hoverboard gateways to resolve the forwarding rule. Although

this works well for bandwidth-intensive flows, bursty flows
might not trigger the installation of a forwarding rule in the
software stack of the source VM, thus incurring in the extra
latency required to traverse a Hoverboard gateway.

However, after a discussion with GCP engineers (that were
able to reproduce and confirm the issue) we believe that this
is not caused by Hoverboard. Indeed, the same behaviour
also happens if the two communicating process run on the
same node, thus using shared memory rather than the network
for communicating. We also exclude issues with the MPI
implementation, since we observed the same behavior when
communicating directly using TCP rather than MPI. This is
also not caused by CPU power saving features, that were
disabled during the tests. We are currently investigating, with
the help of GCP engineers, the reasons for this behaviour, that
are likely related to virtualization.

Observation 3: On GCP, large delays between mes-
sages can increase the RTT/2 up to 3x compared to the
case where messages are sent back to back.

E. HPC vs. Normal Compute Instances

Figure 5 reports the unidirectional bandwidth and RTT/2 for
the different instance types and cloud providers described in
Table I. For GCP and AWS we report the bandwidth when us-
ing 16 concurrent connections. For Azure normal compute in-
stances, we achieved the highest bandwidth (14 Gb/s) with two
concurrent connections, and we observed bandwidth degrada-

tion when running more than two concurrent connections. We
believe that on Azure normal instances concurrent connections
are needed because each VM uses multiple NICs with lower
bandwidth, as documented by Azure [63]. The Azure 200 Gb/s
instances reach the peak bandwidth with 16MiB messages.
Also, we observe that normal compute instances on Azure
are characterized by the lowest bandwidth, whereas AWS
normal instances can achieve a 25Gb/s bandwidth, Oracle
normal instances achieve a bandwidth of 40Gb/s, and GCP
achieve even higher bandwidth than that declared (40Gb/s
versus 32Gb/s).

Regarding the latency, on AWS, HPC instances are char-
acterized by a marginally lower RTT/2 compared to normal
instances. On Azure, we observed a 30 microseconds RTT/2
on normal instances, much higher than that observed on the
HPC instances (around 1-2 microseconds). The same holds for
Oracle, where on normal instances we observed a latency of
almost 30 microseconds. On GCP, we observed no difference
in the latency between normal and HPC instances.

Observation 4: On AWS and GCP, HPC instances
communicate with the same latency as normal instances,
whereas on Azure and Oracle HPC instances communi-
cate with a latency 10-20x lower than normal instances.

IV. NETWORK AND OS NOISE

Application performance can significantly vary across dif-
ferent runs due to effects such as OS and network noise [34],
[64], [65]. To analyze how these different types of noise
can affect the performance of a large scale system, we now
describe how they affect the different terms that contribute to
the time needed to deliver a message according to the LogGP
model [66]. We focus on this model because, although simple,
it captures the fundamental aspects of network communica-
tions, and allows us to implement a solid simulation method-
ology (discussed in Sec. V). LogGP models the time needed
for sending a message of s bytes as T (s) = 2o+L+(s−1)G,
where o is the overhead for sending (and receiving) a message,
L is the network latency, and G is the gap between the
transmission of two subsequent bytes (i.e., the inverse of
the network bandwidth). The model also has an additional
parameter g representing the minimum time between the
transmission of two subsequent messages. This parameter is
not shown in the formula above, because it represents the
transmission time of a single message only.

To outline the model visually, we show in Figure 6 these pa-
rameters for a scenario where a node transmits three messages.
The first two messages are composed of four bytes, while
the third consists of a single byte. Whereas the transmission
of the first message is not affected by any type of noise,
the transmission of the second message experiences both
bandwidth noise and latency noise. Bandwidth noise occurs
in the network, and affects the gap per byte G, slowing down
the transmission of subsequent bytes (or packets) (1). Also
latency noise (2) occurs in the network, and manifests itself

SND

RCV

o

o

G G G

L
T(s)

L

SND

RCV

o GGG
SND

o

g g

1 2

3

S
E
N
D
E
R

R
E
C
E
IV
E
R

time

time

o

T(s)

Fig. 6. Impact of the different types of noise on the LogGP parameters. 1

= bandwidth noise, 2 = latency noise, 3 = OS noise.

as an increase in the latency L. It delays the transmission of
some bytes (or packets) of the message, and might be caused
by transient congestion in the network. The main difference
between latency and bandwidth noise is in the duration of the
noise events. For example, ECMP routing can cause persistent
bandwidth noise due to mapping of multiple network flows on
the same paths. Last, OS noise occurs on the host (3), can
affect both the o and g parameters and, in general, can also
cause an increase in the transmission time of a message. The
impact of OS noise on the scalability of HPC systems has
been largely studied [64], [65], [67], but it is still not clear
what is its impact on cloud HPC systems, or whether network
noise is the major component of cloud systems noise.

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

COMP

1

2

H0

H1

H2

H3

time

time

time

time

Fig. 7. Noise affecting a tightly coupled butterfly-structured collective
operation. 1 = OS noise, 2 = latency noise

Moreover, the larger the application scale, the higher the
probability that some data transmissions experience either OS
or network noise. This can be an issue in tightly coupled
applications, where it is enough to delay one single process to
slow down the entire application, thus limiting its scalability.
Moreover, multiple noise events can either overlap, or sum
up and amplify. We exemplify this in Figure 7, showing a
few steps of a collective operation performing a butterfly
communication pattern. In this example, one process is af-
fected by OS noise, thus delaying the transmission of its data
(1), while another process is affected by latency noise (2).
Because these two noise events overlap, the application is
only delayed by the maximum between the two. In general,
non-overlapping noise events can accumulate and significantly
increase the application execution time. In the remaining part
of this section, we analyze the noise events we observed on
the systems of Table I. Then, in Sec. V we simulate how these
events affect applications at scale.

0 1 2 3 4 5
Time (s)

101

102

103

D
e
to

u
r

(u
s)

AWS

0 1 2 3 4 5
Time (s)

Azure

0 1 2 3 4 5
Time (s)

GCP

0 1 2 3 4 5
Time (s)

Oracle

0 1 2 3 4 5
Time (s)

101

102

103

D
e
to

u
r

(u
s)

Alps

0 1 2 3 4 5
Time (s)

Daint

0 1 2 3 4 5
Time (s)

DEEP-EST

Normal HPC HPC (Metal) HPC (200 Gb/s)

Fig. 8. OS noise for the different instance types described in Table I for the different providers.

A. OS Noise

We measured OS noise by running the selfish detour
benchmark provided by Netgauge, using the same parameters
suggested by the authors [65]. The benchmark measures
perturbation introduced by the OS, and has been successfully
used in the past to assess OS noise of some on-premise HPC
systems [65]. It runs a tight loop and records all the iterations
larger than 9·tmin, where tmin is the minimum measured time
required to complete one iteration. The benchmark runs until a
predefined number of iterations are recorded. Figure 8 shows
detour durations over time for a 5 seconds window, for all con-
sidered providers. To improve the readability of the plots, we
only report the largest samples (top 1%). It is worth remarking
that those largest samples are exactly those representing the
noise and limiting applications scalability [65].

We observe that on-premise systems have the lowest OS
noise, as well as HPC bare-metal instances on AWS and
Oracle. On the other hand, on AWS and Azure, HPC and
normal instances experience noise with high intensity and
high frequency, whereas GCP experience noise with medium
frequency and low intensity. On Azure, normal and 200 Gb/s
instances experience noise with higher frequency than the 100
Gb/s HPC instances.

Observation 5: When available, bare-metal HPC in-
stances are characterized by a lower OS noise than non
bare-metal instances, and are comparable to on-premise
HPC systems. Normal instances are characterized by OS
noise with high frequency.

B. Latency Noise

We now evaluate the impact of latency noise by running a
1-byte ping-pong for one hour. Generally, the performance of
a multi-tenant computing system might change depending on
the time of the day (due to the different system utilization).
We collected data for 24 consecutive hours on all the analyzed
systems (not shown here due to space constraints), and we did
not observe significant intra-day variability. For consistency,
we report here the data collected at 5 PM in the local time of
the cluster. Performance might also change depending on the
distance between the two nodes in the network. For this reason,
we analyze the noise for different node distances. On AWS and
GCP it is possible to specify whether the VMs in a cluster
must share the same rack (and thus the same network switch)
or not. We did the same on the three on-premise systems for
consistency and fairness. On Azure, unfortunately, to use the
high-bandwidth network, HPC VMs must always share the
same rack. On Oracle it is not possible to specify or check the
allocation. However, to simplify the exposition of the results,
we assume that the two VMs share the same rack.

Figure 9 reports the results of our latency noise assessment
on the different providers for different node distances for 100
Gb/s HPC instances (bare-metal when applicable). We show
the latency normalized with respect to the minimum latency
(for completeness, we report in Table II the minimum and
average latency). To improve the readability of the plot, we
only report the largest 0.1% measurements.

We observe that, when the two nodes are on the same
rack, Alps experiences latency noise with the highest intensity,
with samples experiencing a latency more than 128 times
higher than the minimum. Also, on Oracle we observed one
measurement equal to 59 milliseconds, 35000 times larger than
the minimum latency. The other systems instead experience

0 10 20 30 40 50 60
Time (min)

2

8

32

128

512

N
o
rm

a
liz

e
d
 L

a
te

n
cy

Same Rack
Oracle has one sample at 59ms
(35k times larger than the min)

0 10 20 30 40 50 60
Time (min)

Different Racks

AWS Azure GCP Oracle Alps Daint DEEP-EST

Fig. 9. Latency noise for different node distances for 100 Gb/s HPC instances. Base latency is reported in Table II.

TABLE II
MINIMUM AND AVERAGE LATENCY AND BANDWIDTH FOR THE DIFFERENT PROVIDERS, INSTANCE TYPES, AND NODE DISTANCES.

AWS Azure GCP Oracle Alps Daint DEEP-EST

Normal HPC
(Metal) Normal HPC HPC

(200 Gb/s) Normal HPC Normal HPC
(Metal)

HPC
(Metal)

HPC
(Metal)

HPC
(Metal)

S
A

M
E

R
A

C
K

Min. Lat. (us) 19.28 16.79 26.11 1.50 1.70 9.42 8.46 24.68 1.66 2.13 1.19 1.19
Mean Lat. (us) 23.11 18.97 29.59 1.65 1.84 10.64 9.98 26.43 1.72 3.01 2.39 1.70
Max. Band. (Gb/s) 27.32 78.74 7.42 93.92 194.48 45.45 75.75 11.20 97.53 97.14 74.37 90.46
Mean Band. (Gb/s) 27.02 70.84 7.28 93.51 194.25 38.82 68.45 8.39 97.50 96.32 73.93 90.27

D
IF

F
E

R
E

N
T

R
A

C
K

S

Min. Lat. (us) 22.46 17.20 N.A. N.A. N.A. 12.39 14.90 N.A. N.A. 2.66 1.19 1.41
Mean Lat. (us) 27.57 19.26 N.A. N.A. N.A. 15.02 16.66 N.A. N.A. 2.90 3.33 1.93
Max. Band. (Gb/s) 30.52 77.72 N.A. N.A. N.A. 34.84 70.11 N.A. N.A. 96.15 75.24 90.49
Mean Band. (Gb/s) 30.14 67.02 N.A. N.A. N.A. 30.67 65.71 N.A. N.A. 96.00 74.59 90.26

noise with lower intensity. When the two nodes are on different
racks, the noise significantly increases on Daint. One of the
reasons is adaptive routing, that can sometimes unnecessarily
select longer paths [21].

On-premise HPC systems are characterized by latency noise
with higher intensity, due to the generally lower latency (cf.
Sec. III). As a consequence, fluctuations in the latency have a
larger relative impact (but a smaller absolute impact). It is
worth remarking that, regardless of the absolute impact of
noise on the latency, as we will show in Sec. V, noise at
scale can negatively impact the performance, even on systems
characterized by a lower base latency.

Figure 10 shows the latency noise for different instance
types for the four cloud providers (with instances running in
the same rack). We observe that on GCP normal instances
are characterized by higher noise compared to HPC instances,
whereas, on Azure, HPC instances experience a few high-
intensity noise events. We did not observe significant differ-
ences between the different instance types on AWS, whereas
on Oracle we observe a higher noise on HPC instances
compared to normal instances.

Observation 6: Latency noise affects both cloud and
on-premise HPC systems, and can increase the latency by
more than 100x (in a single case up to 35000x). Except

that for GCP, HPC instances are not characterized by a
lower latency noise than normal instances.

C. Bandwidth Noise

To measure bandwidth noise, we run large message ping-
pongs between two nodes for one hour, and record each
sample. For each provider, we select the size of the message
that saturates the bandwidth, as well as the optimal number of
connections. Even in this case we did not observe significant
intra-day variability.

We report the bandwidth noise for HPC instances (bare-
metal when applicable) for different node distances in Fig-
ure 11. We normalize the bandwidth with respect to the
maximum and, to improve the readability of the plot, we
only plot the bottom 0.1% samples (i.e, those with the lowest
bandwidth). For completeness, we report in Table II the
maximum and average bandwidth. We observe that, when the
two nodes are on the same rack, AWS, GCP, and Oracle are
the most affected by bandwidth noise. On Oracle, bandwidth
noise is clustered in time, causing persistent drops that last for
up to 0.6 seconds.

Daint and DEEP-EST are almost unaffected by bandwidth
noise, whereas Azure and Alps experiences some bandwidth
drops. When the two nodes are on different racks, almost all
the systems (except for DEEP-EST and Azure) experience an

0 20 40 60
Time (min)

2

8

32

128

512

N
o
rm

a
liz

e
d
 L

a
te

n
cy

AWS

0 20 40 60
Time (min)

Azure

0 20 40 60
Time (min)

GCP

0 20 40 60
Time (min)

Oracle
Normal HPC HPC (Metal) HPC (200 Gb/s)

HPC (Metal) has one sample
at 59 ms (35k times larger
than the min)

Fig. 10. Latency noise for different instance types. Base latency is reported in Table II.

0 10 20 30 40 50 60
Time (min)

0.0

0.5

1.0

N
o
rm

a
liz

e
d
 B

a
n
d
w

id
th

Same Rack

0 10 20 30 40 50 60
Time (min)

Different Racks

AWS Azure GCP Oracle Alps Daint DEEP-EST

2.23 Gb/s 1.11 Gb/s

Fig. 11. Bandwidth noise for different node distances for 100 Gb/s HPC instances. Base bandwidth is reported in Table II.

0 20 40 60
Time (min)

0.00

0.25

0.50

0.75

1.00

N
o
rm

a
liz

e
d
 B

a
n
d
w

id
th

AWS

0 20 40 60
Time (min)

Azure

0 20 40 60
Time (min)

GCP

0 20 40 60
Time (min)

Oracle
Normal HPC HPC (Metal) HPC (200 Gb/s)

2.23Gb/s

Fig. 12. Bandwidth noise for different instance types. Base bandwidth is reported in Table II.

Daint Alps DEEP-EST Azure Azure
(200 Gb/s)

AWS GCP Oracle
0

20

40

60

80

100

120

Ti
m

e
(u

s)
Dissemination

Simulated
Real

Daint Alps DEEP-EST Azure Azure
(200 Gb/s)

AWS GCP Oracle
0

2000

4000

6000

8000

10000

Ti
m

e
(u

s)

Ring
Simulated
Real

Fig. 13. Comparison between measured and simulated times (on HPC instances) for 16B dissemination and 16MiB ring collectives on 16 nodes. Vertical
lines at the top of the boxes represent the 95% confidence interval.

increase in bandwidth noise, with GCP having a few samples
experiencing a severe bandwidth drop.

Figure 12 shows the bandwidth noise for the different
instance types, when the two nodes are on the same rack. We
do not observe significant differences between the different
instance types on AWS and GCP. On Azure, we observe a
slightly higher bandwidth noise on 200 Gb/s instances, for the
same reason discussed for the latency noise (small congestion
events have a larger relative effect at higher bandwidth). On
Oracle, normal instances are severely affected by bandwidth
noise, with many samples characterized by a bandwidth equal
to 40% of the maximum achievable bandwidth.

Observation 7: Cloud systems are more affected by
bandwidth noise than on-premise systems. When nodes
are on two different racks, the impact of bandwidth noise
increases on GCP and Daint. On GCP and Oracle, normal
instances are more affected by bandwidth noise.

V. LARGE-SCALE SIMULATIONS

To assess the impact of noise at scale, we simulate the
performance of collective operations with the LogGOPSim
simulator [44], [45]. This allows us to analyze the impact of
different types of noise in a controlled environment and to
estimate the scalability of distributed applications at scale.

A. Simulation Setup and Validation

LogGOPSim uses the LogGOPS network model to simulate
the execution of parallel algorithms and entire applications.
The simulator takes as input the LogGOPS parameters and
a program to simulate on an arbitrary number of nodes. The
program can either be specified through the Group Operation
Assembly Language (GOAL [68]) or through MPI traces.
GOAL specifications are composed of a series of send and
receive operations for each process, plus synthetic computa-
tional operations, and dependencies among these operations.
The simulator can also take as an input an OS noise trace,
and we extended it to use latency and bandwidth noise traces.
Every time a message is sent, instead of simulating a fixed

term for the latency or the bandwidth, a value is drawn from
the latency and bandwidth noise distributions measured on
the real system. Those distributions are built according to the
measurement taken with Netgauge (see Sec. IV).

Before simulating the impact of noise at a large scale,
we validate the simulator on different collective algorithms.
We implemented a program that generates the MPI code
of a specific distributed algorithm starting from its GOAL
specification. We then execute the generated code on 16 nodes
(due to quota limitations, this is the largest allocation that we
could get on all the cloud providers at the time of writing.) on
the HPC instances. We show in Figure 13 the time measured
on the real systems and the time simulated by LogGOPSim
starting from the corresponding GOAL trace.

We consider two different widely-used collective operations:
a dissemination algorithm (like those used in barriers and small
allreduce operations) and a ring-based collective (like the one
used in reduce-scatter, allgather, and allreduce operations on
large data). Dissemination is executed with 16B messages, and
ring with 16MiB messages. We observe how the simulated
time closely match the measured time, with a relative error
lower than 10% on both collectives. Similar results have been
observed on 4, 8, and 32 nodes, and shown in Appendix A. We
also run the validation up to 128 nodes on Daint (not shown
in the plot), observing a relative error below 5%.

B. Analysis of Noise on Dissemination Collectives

To analyze the impact of different types of noise on the scal-
ability of parallel applications, we simulated the performance
of a 16B dissemination collective on the different systems,
and we report the results in Figure 14. For the cloud providers,
we only consider HPC instances. We report the results without
any noise, with only OS noise or only network noise, and with
both noise types. For AWS, we do not report the results for
HPC non bare-metal instances, because we did not observe
any difference from HPC bare-metal.

We use different scales for the Y-axes in each subplot
for readability purposes. We repeated each experiment 1000
times, and we report the entire distribution of the samples
as boxplots. In each boxplot, the middle line represents the

4 64 1K 16K
0.00

0.25

0.50

0.75

1.00

1.25

1.50

T
im

e
 (

m
s
)

AWS - HPC (Metal)

4 64 1K 16K
0.0

0.1

0.2

0.3

0.4

0.5

Azure - HPC

4 64 1K 16K
0.0

0.1

0.2

0.3

0.4

Azure - HPC (200 Gb/s)

4 64 1K 16K
0.0

0.2

0.4

0.6

0.8

1.0

GCP - HPC

4 64 1K 16K

Nodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
 (

m
s
)

Oracle - HPC (Metal)

4 64 1K 16K

Nodes

0.0

0.5

1.0

1.5

Alps - HPC (Metal)

4 64 1K 16K

Nodes

0.00

0.05

0.10

0.15

0.20

Daint - HPC (Metal)

4 64 1K 16K

Nodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

DEEP-EST - HPC (Metal)

No Noise OS Noise Network Noise OS+Network Noise

Max=165ms

Mean=10ms

Max=165ms

Mean=.75ms

Max=165ms

Mean=.5ms

Fig. 14. Simulation of the scalability of a 16B dissemination algorithm, with and without OS and network noise. Y-axes have different scales.

median, the notch around the median is the 95% confidence
interval, and the small white square indicates the mean. The
upper and lower limits of the box indicate the first quartile
(Q1) and the third quartile (Q3). Being IQR = Q3−Q1 the
interquartile range, the lower and upper whiskers indicate the
smallest sample > Q1 − 1.5 · IQR, and the largest sample
< Q3+1.5 · IQR, respectively. Samples outside the whiskers
are outliers and reported as black diamonds.

We first focus on the performance in the ideal case where
noise does not affect the systems. We observe that, even
without noise, both AWS and GCP are characterized by a
lower performance than Azure, Oracle, and the on-premise
systems, up to an order of magnitude lower. This is due to the
latency on AWS and GCP being one order of magnitude larger
than that of the other systems (see Table II). Starting from
1K nodes AWS performance is severely affected by noise. As
highlighted in Sec. IV-A, AWS systems are those experiencing
OS noise with the highest intensity, and this significantly
increases the runtime of the collective operation, up to 2x
on 16K nodes. Even without any OS noise, network noise
would still increase the runtime by 50%. We did not observe
amplification effects when adding both types of noise.

Something similar occurs on Azure HPC instances, where
network noise increases the average runtime by more than a
factor of 4 on 16K nodes, with a few outliers increasing the
runtime by 10 times compared to a noiseless execution. On
the other hand, 200Gb/s instances are mostly affected by OS
noise since, as shown in Sec. IV-A, latency noise has lower
intensity compared to 100Gb/s instances. GCP is characterized
by network noise with lower intensity, reflecting on a lower
relative increase in the runtime.

On Oracle, we observe a small increase in the median
runtime. However, a few outliers (not shown in the plot for the
sake of readability) experienced a runtime of 165ms on 16K
nodes, increasing the average runtime to 10ms. These outliers
are caused by some rare noise events with very high intensity
(as discussed in Sec. IV-B). OS and network noise severely
affect on-premise systems as well, with Daint experiencing a
2x increase in the runtime on 16K nodes due to OS noise, and
up to almost 4x due to network noise.

Observation 8: OS and network noise can increase the
median runtime up to 2x on 1K nodes, and up to 10x on
16K nodes, both on on-premise and cloud systems.

C. Analysis of Noise on Ring Collectives

We also analyze the impact of noise on bandwidth-
dominated ring collectives. This type of collectives are widely
used in the training of deep learning models to average gradi-
ents [69]. In a ring collective each node iteratively receives a
chunk of data from its left neighbor, and sends another chunk
of the same size to the right neighbour. An allreduce performed
as a ring collective is bandwidth optimal, and particularly
effective on a smaller node count and for large data. However,
due to the long chain of dependencies (each node has to wait
to receive data from the previous node before sending), it is
enough to slow down a single message transmission to delay
the entire operation.

For this reason, we show in Figure 15 the results of the
simulation of a 512MiB ring allreduce collective. First, for all
the systems we observe no impact of OS noise on the runtime.

4 16 64 256 1K

Nodes

200

250

300

350

400

T
im

e
 (

m
s
)

AWS - HPC (Metal)

4 16 64 256 1K

Nodes

100

120

140

160

Azure - HPC

4 16 64 256 1K

Nodes

50

55

60

65

70

75

Azure - HPC (200 Gb/s)

4 16 64 256 1K

Nodes

500

1000

1500

2000

GCP - HPC

4 16 64 256 1K

Nodes

200

400

600

800

T
im

e
 (

m
s
)

Oracle - HPC (Metal)

4 16 64 256 1K

Nodes

100

120

140

Alps - HPC (Metal)

4 16 64 256 1K

Nodes

120

140

160

180

200

Daint - HPC (Metal)

4 16 64 256 1K

Nodes

95

100

105

110

115

120

DEEP-EST - HPC (Metal)

No Noise OS Noise Network Noise OS+Network Noise

Fig. 15. Simulation of the scalability of a 512MiB ring allreduce collective on HPC instances.

Also, we observe how network (bandwidth) noise impacts the
performance also on when running the application on 4 nodes
only. On almost all the providers we observe network noise
increasing the runtime by almost 50% on 4 nodes. On GCP, a
few outliers increase the runtime up to 5 times on 16 nodes,
whereas on Oracle the noise increases the average runtime by
4x on 1024 nodes.

Observation 9: Bandwidth noise can severely affect
both on-premise and cloud systems, increasing the run-
time by 50% even when running at small scale (4 nodes).

D. Analysis of Noise Impact on Cost

Last, we analyze the cost of running HPC workloads in
the cloud, by also factoring in the costs due to the different
CPUs used by the different providers. We simulate a strawman
application running a 128 × 128 double-precision matrix-
matrix multiplication followed by a dissemination collective.
The message size in the dissemination phase is 128 KiB,
equal to the size of the matrix (128 × 128 × 8 bytes). This
communication pattern represents applications that perform
some computation followed by reductions (e.g., deep learning
training workloads). We measured the time required to perform
matrix multiplications on the different CPUs deployed in the
analyzed systems by running a benchmark [70] using MKL
on Intel processors, and BLIS on AMD processors.

It is worth remarking that the purpose of this benchmark is
not to extensively evaluate CPUs performance (that is outside
the scope of this paper), but rather to factor in our cost estima-
tion the difference in costs due to different CPU technology.

Also, collecting traces of real applications and then simulating
them would complicate the interpretability of the results. For
example, differences between systems due to differences in
OS, libraries compilers, and tools would be amplified on
complex applications. By using a mockup application, we can
instead keep these differences at a minimum and spotlight
differences due to the network rather than on other factors.

We report in Figure 16 the results of this analysis on 100
Gb/s instances for different node count, by showing the relative
increase in the monetary cost caused by noise over a noiseless
execution, due to the increase in the runtime. We considered
the on-demand cost, and we only report the results for those
systems where the cost is publicly available (see Table I). First,
we observe that even when running on 64 nodes, the increase
in the cost due to noise ranges from 10 to 50%.

This is exacerbated when increasing the number of nodes,
and we observe up to a 2x increase in the cost at 16K nodes.
We observe that OS noise only contributes for a fraction of
the cost increase, and that much of the increase is caused
by network noise. On Oracle, we observe the highest cost
increase due to network noise, due to some outliers with very
high latency, as discussed in Sec. IV-B and Sec. V-B. Also,
it is worth remarking that, a larger cost increase does not
necessarily mean a larger cost and that, despite the noise,
Azure and Daint are still more cost effective than AWS and
GCP for this type of workload.

The increase in the cost due to noise also depends on
the ratio between communication and computation time. To
further analyze this, we repeat the same experiment by simu-
lating matrix multiplication of larger matrices (8192× 8192),
followed by a 512 MiB allreduce (implemented with a ring

4 64 1024 16384
Nodes

0

50

100

C
o
st

 I
n
cr

e
a
se

 (
%

)

AWS HPC (Metal)

4 64 1024 16384
Nodes

0

50

100

150

200

Azure HPC

4 64 1024 16384
Nodes

0

100

200

300

C
o
st

 I
n
cr

e
a
se

 (
%

)

GCP HPC

4 64 1024 16384
Nodes

0

2500

5000

7500

10000

Oracle HPC (Metal)

4 64 1024 16384
Nodes

0

25

50

75

100

Daint HPC (Metal)

OS Noise Network Noise OS+Network Noise

Fig. 16. Simulation of the cost 128 × 128 double-precision matrix multiplications followed by a 128KiB dissemination, on different node count. Black
vertical lines at the top of the boxes represent the 95% confidence interval.

collective). While in the previous experiment the communi-
cation accounted for more than 90% of the overall execution
time, in this case it accounts for less than 20% of the overall
time. We show the results of this analysis in Figure 17.

For this workload, OS noise does not play a significant role,
since the application is not latency sensitive. On the other
hand, network noise increases the monetary cost of at least
5% on all the systems. On GCP, it causes an additional 15%
cost on 4 nodes, and up to 30% on 256 nodes.

Observation 10: Network noise can have a significant
impact on the monetary cost of running a distributed
application. This is even true at small scale, and for
applications that are not dominated by communication.

VI. DISCUSSION

A. Recommendations

In general, we observe some differences between the net-
work performance of 100 Gb/s HPC networks of cloud and
on-premise HPC systems. For example, AWS and GCP cannot
saturate the bandwidth with a single connection. Accordingly,
HPC applications running on those two systems should per-
form, when possible, multiple concurrent communications at
any given time to fully exploit the underlying HPC network.
Also, both AWS and GCP are characterized by a higher latency
than on-premise systems, and are thus not particularly suited
for latency-sensitive HPC applications. On the other hand, both
Azure and Oracle show latency and bandwidth much similar
to those of on-premise HPC systems.

In general, OS and network noise affect in similar ways
the performance of both cloud and on-premise HPC systems.
However, there are some exceptions. For example, on Oracle
we observed some recurrent and severe bandwidth drops (and
latency spikes). This also happened on GCP, but only when
the two VMs were allocated on different racks. To mitigate
the impact of bandwidth noise on GCP, users should take
some extra care when creating their VMs, trying to minimize
bandwidth-heavy communications between VMs on different
racks. On Daint, communications between nodes on different
racks also experience latency noise with high intensity. This
is partially due to the routing algorithm, and users could use
existing techniques to mitigate this issue [21].

Through simulations we observed that, whereas OS noise
has a limited impact on performance, network noise can reduce
the performance up to 2x, both at small and large scales.
Unfortunately, there is no way for the users to mitigate this, but
we want we raised awareness on the impact this issue might
have on the performance and cost of running applications (both
on cloud and on-premise HPC systems).

B. Limitations

Our study has some limitations that must be considered to
have a complete picture. For example, network noise might
depend on which and how many applications were concur-
rently ran by other users on the systems. Because this is not
under our control, we ran each experiment multiple times and
at different times of the day, with the aim of capturing different
behaviours. However, we observed a consistent behavior. Both
Alps and Daint were usually fully utilized, as we observed

4 16 64 256 1024
Nodes

0

10

20

C
o
st

 I
n
cr

e
a
se

 (
%

)

AWS HPC (Metal)

4 16 64 256 1024
Nodes

0

2

4

6

Azure HPC

4 16 64 256 1024
Nodes

0

10

20

C
o
st

 I
n
cr

e
a
se

 (
%

)

GCP HPC

4 16 64 256 1024
Nodes

0.0

0.5

1.0

1.5

2.0

Oracle HPC (Metal)

4 16 64 256 1024
Nodes

0

2

4

6

Daint HPC (Metal)

OS Noise Network Noise OS+Network Noise

Fig. 17. Simulation of the cost 8192× 8192 double-precision matrix multiplications followed by a 512 MiB ring allreduce, on different node count. Vertical
lines at the top of the boxes represent the 95% confidence interval.

from Slurm (the job scheduler deployed on those two systems).
DEEP-EST was usually quiet, while we could not get any
information about how many applications were running at any
given time on the cloud systems.

Similarly, on the cloud we can only control whether the
two VMs are on the same or different racks (and not even
on all the providers). However, the specific placement and the
distance between the VMs would also have a different impact
on performance and noise that, however, we are not able to
control on such a fine granularity.

Also, it is in general not possible to precisely separate
network noise from OS noise. Indeed, part of the network
communication is executed on the host and is thus influenced
by OS noise. After discussing with Cray HPE engineers, we
found out that this is likely one of the reasons why, for
example, we observed a high latency noise on Alps. This issue
has been fixed through updates to the OS, but those updates
were not deployed on Alps before the publication of this paper.

In this work, we used the LogGOPSim simulator, that
we extended to simulate latency and bandwidth noise, and
instantiated with the parameters we measured on the different
systems. Due to limitations in the number of instances we
could create on cloud systems, we could validate our simulator
only on up to 32 nodes. Although network performance might
change at larger scales (e.g., due to a higher average distance
between compute nodes, and to higher path diversity), we still
believe that these simulations help understanding the general
performance trend, and to simulate and isolate the impact of
OS and network noise.

VII. RELATED WORK

A. Cloud Benchmarking

To improve network performance, recently cloud providers
introduced homogeneous HPC instances and low-latency net-
works with RDMA support. Therefore, various works asked if
this could be a game-changer for tightly coupled applications.
Sadooghi et al. [71] compare AWS with a private cloud
by considering a wide variety of metrics including memory
hierarchy, compute, network, and I/O performance, as well as
the cost normalized to memory capacity and bandwidth, and
to compute performance. Other metrics include job queueing
and turnaround time [29]. In this work, instead, we focus on
network performance and noise, and on its impact on scala-
bility at scale, by performing our analysis on four different
cloud providers and three on-premise HPC systems.

Mohammadi and Bazhirov [72] use Linpack benchmarks
to compare different cloud computing vendors and a tradi-
tional supercomputer. Their results show that Microsoft Azure
provides the best results thanks to the low latency Infini-
band interconnect network that facilitates efficient scaling,
and performance on the public cloud can be comparable
to modern traditional supercomputing systems. Aljamal et
al. [73] benchmark various Azure Cloud instances with the
NASA parallel benchmark, highlighting the benefits of having
high bandwidth capable networking for global communication
patterns.

Guidi et al. [12] evaluate benchmarks and applications on
AWS, showing that the cloud may have higher bandwidth and
lower latency than on-prem systems, especially for medium-

large sized messages. Fernandez [74] evaluates single instance
and cluster performance on five cloud providers using mi-
crobenchmarks to measure performance of collective MPI
operations and the HPCG benchmark. Results show that only
100 Gb/s instances exhibits good scalability.

While these works mainly focus on benchmarking of com-
pute performance and application scalability, all of them high-
light the importance of the network in achieving profitability.
To the best of our knowledge, no other works assess the impact
of network noise on cloud. In this paper we provide an in-depth
assessment of network performance and noise, and simulate its
impact on small collectives at scale. Our simulation method-
ology can also be applied on other workloads, to understand
if and how they can benefit from running on the cloud.

Most of the above works analyze cloud providers us-
ing well-known network benchmarks, such as OSU micro-
benchmarks [75] or Intel MPI benchmarks [76]. These tools
however only provide aggregated measurements over multiple
runs, that would then hide noise effects. In this work we rely
on the Netgauge measurement tool [60], that provides detailed
per-sample measurements, as well as tools for estimating
LogGP parameters and OS noise.

B. Network Noise

Various works investigate the impact of network noise [25],
[24], [77]. Chunduri et al. [22] analyze different sources
of performance variability, and the impact of the routing
algorithm on collective operations. Priscari et al. [78] propose
job allocation strategies to minimize the contention on the
links. Smith et al. [23] study the impact of network noise on
both dragonfly and fat-tree networks and propose an adaptive
routing algorithm for fat-trees. De Sensi et al. [21] propose an
application-aware routing algorithm to mitigate network noise
and improve application performance on dragonfly networks.
However, all these works focus on on-prem systems and, to
the best of our knowledge, this is the first systematic analysis
of network noise on HPC cloud systems and on its impact on
scalability.

VIII. CONCLUSIONS

The HPC community often looks at cloud systems with
skepticism, amongst the concerns about their costs, and the
suspicion about their ability to efficiently run large-scale
tightly coupled applications. In this work, we analyze network
performance and noise, and their impact on the scalability of
large-scale computations.

Like on-prem systems, cloud interconnection networks suf-
fer from network performance variability. We used small scale
performance and noise measurements to assess the impact of
noise at a larger scale through simulations. After validating the
simulation environment, we showed that all the providers are
affected by OS and network noise both at small and large scale,
and for different communication patterns. Those effects must
be taken into account when we look at the cost profitability
of such systems.

Although cloud systems are updated frequently, we believe
the methodology we used (benchmark at a small scale and
simulation at a larger scale) can be utilized on any large scale
system to evaluate the impact of OS and network noise at
scale. This approach can be a valuable tool for administrators
and architects to assess the extent of OS and network noise.
Also, it can help researchers, institutions, and businesses that
want to quickly evaluate the potential impact of noise on the
scalability of a cloud based solution for their HPC workloads
without paying the cost of renting (and getting access to) a
large number of machines.

ACKNOWLEDGMENT

We would like to thank for their support, feedback, and in-
sightful discussions: CSCS; Duncan Roweth from Cray HPE;
Evan Burness from Microsoft Azure; Matt Koop and Brendan
Bouffler from AWS; Bill Magro, David Wetherall, Jiuxing
Liu, and Rick Jones from GCP; Patrick Saltzmann, Anupam
Karmakar, and Calebe Kuenzle from Oracle Cloud. We also
thank our shepherd, Kevin Vermeulen, and all anonymous
reviewers for their insightful feedback and suggestions, which
substantially improved the content and presentation of this
paper.

This work has been partially funded by the European Re-

search Council (ERC) grant PSAP (grant no. 101002047),
the European Union’s Horizon Europe programme projects
DEEP-SEA (grant no. 955606), and RED-SEA (grant no.
955776). Daniele De Sensi was supported by an ETH Post-
doctoral Fellowship (19-2 FEL-50).

REFERENCES

[1] D. Reed, D. Gannon, and J. Dongarra, “Reinventing high performance
computing: Challenges and opportunities,” https://arxiv.org/abs/2203.
02544, 2022.

[2] M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda, “Cloud
paradigms and practices for computational and data-enabled science
and engineering,” Comput. Sci. Eng., vol. 15, no. 4, pp. 10–18, 2013.
[Online]. Available: https://doi.org/10.1109/MCSE.2013.49

[3] C. Peña-Monferrer, R. Manson-Sawko, and V. Elisseev, “Hpc-cloud
native framework for concurrent simulation, analysis and visualization
of cfd workflows,” Future Generation Computer Systems, vol. 123,
pp. 14–23, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X21001291

[4] K. Saurabh, S. Adavani, K. Tan, M. Ishii, B. Gao, A. Krishnamurthy,
H. Sundar, and B. Ganapathysubramanian, “Case study of sars-
cov-2 transmission risk assessment in indoor environments using
cloud computing resources,” in 2021 SC Workshops Supplementary
Proceedings (SCWS). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2021, pp. 79–86. [Online]. Available: https://doi.
ieeecomputersociety.org/10.1109/SCWS55283.2021.00020

[5] M. Ohue, K. Aoyama, and Y. Akiyama, “High-performance cloud
computing for exhaustive protein–protein docking,” in Advances in
Parallel & Distributed Processing, and Applications, H. R. Arabnia,
L. Deligiannidis, M. R. Grimaila, D. D. Hodson, K. Joe, M. Sekijima,
and F. G. Tinetti, Eds. Cham: Springer International Publishing, 2021,
pp. 737–746.

[6] V. Navale and P. E. Bourne, “Cloud computing applications for
biomedical science: A perspective,” PLOS Computational Biology,
vol. 14, no. 6, pp. 1–14, 06 2018. [Online]. Available: https:
//doi.org/10.1371/journal.pcbi.1006144

[7] AWS, “Aws graviton processor,” https://aws.amazon.com/it/ec2/
graviton/, 2022, accessed: 31-Mar-2022.

https://arxiv.org/abs/2203.02544
https://arxiv.org/abs/2203.02544
https://doi.org/10.1109/MCSE.2013.49
https://www.sciencedirect.com/science/article/pii/S0167739X21001291
https://www.sciencedirect.com/science/article/pii/S0167739X21001291
https://doi.ieeecomputersociety.org/10.1109/SCWS55283.2021.00020
https://doi.ieeecomputersociety.org/10.1109/SCWS55283.2021.00020
https://doi.org/10.1371/journal.pcbi.1006144
https://doi.org/10.1371/journal.pcbi.1006144
https://aws.amazon.com/it/ec2/graviton/
https://aws.amazon.com/it/ec2/graviton/

[8] Amazon, “Amazon ec2 p4d instances – highest performance for ml
training and hpc applications in the cloud,” https://aws.amazon.com/ec2/
instance-types/p4/, 2022, accessed: 31-Mar-2022.

[9] Google, “Cloud tpu,” https://cloud.google.com/tpu, 2022, accessed: 31-
Mar-2022.

[10] Azure, “Fpga optimized virtual machine sizes,”
https://docs.microsoft.com/en-us/azure/virtual-machines/
sizes-field-programmable-gate-arrays, 2022, accessed: 31-Mar-2022.

[11] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-house
cluster: Evaluating amazon cluster compute instances for running mpi
applications,” in State of the Practice Reports, ser. SC ’11. New
York, NY, USA: Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/2063348.2063363

[12] G. Guidi, M. Ellis, A. Buluç, K. Yelick, and D. Culler, 10 Years Later:
Cloud Computing is Closing the Performance Gap. New York, NY,
USA: Association for Computing Machinery, 2021, p. 41–48. [Online].
Available: https://doi.org/10.1145/3447545.3451183

[13] D. Thaler and C. Hopps, “Rfc2991: Multipath issues in unicast and
multicast next-hop selection,” USA, 2000.

[14] L. Shalev, H. Ayoub, N. Bshara, and E. Sabbag, “A cloud-optimized
transport protocol for elastic and scalable hpc,” IEEE Micro, vol. 40,
no. 6, pp. 67–73, 2020.

[15] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat, “Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 183–197. [Online].
Available: https://doi.org/10.1145/2785956.2787508

[16] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng,
H. Wu, Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency
routing for clos-based data center networks,” in Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 49–60. [Online]. Available:
https://doi.org/10.1145/2535372.2535375

[17] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and
G. Varghese, “Conga: Distributed congestion-aware load balancing
for datacenters,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 503–514. [Online]. Available:
https://doi.org/10.1145/2619239.2626316

[18] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 225–238. [Online].
Available: https://doi.org/10.1145/3098822.3098839

[19] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and
T. Hoefler, “An in-depth analysis of the slingshot interconnect,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’20. IEEE Press,
2020.

[20] C. B. Stunkel, R. L. Graham, G. Shainer, M. Kagan, S. S. Sharkawi,
B. Rosenburg, and G. A. Chochia, “The high-speed networks of the
summit and sierra supercomputers,” IBM Journal of Research and
Development, vol. 64, no. 3/4, pp. 3:1–3:10, 2020.

[21] D. De Sensi, S. Di Girolamo, and T. Hoefler, “Mitigating network
noise on dragonfly networks through application-aware routing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356196

[22] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on xeon phi based cray xc
systems,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3126908.3126926

[23] S. A. Smith, C. E. Cromey, D. K. Lowenthal, J. Domke, N. Jain, J. J.
Thiagarajan, and A. Bhatele, “Mitigating inter-job interference using

adaptive flow-aware routing,” in SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2018,
pp. 346–360.

[24] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch
out for the bully! job interference study on dragonfly network,” in SC
’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 750–760.

[25] T. Hoefler, T. Schneider, and A. Lumsdaine, “The Effect of Network
Noise on Large-Scale Collective Communications,” Parallel Processing
Letters (PPL), vol. 19, no. 4, pp. 573–593, Aug. 2009.

[26] Y. A. Liu, X. L. Liu, F. N. Li, H. Fu, Y. Yang, J. Song, P. Zhao,
Z. Wang, D. Peng, H. Chen, C. Guo, H. Huang, W. Wu, and D. Chen,
“Closing the ”quantum supremacy” gap: Achieving real-time simulation
of a random quantum circuit using a new sunway supercomputer,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3487399

[27] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis
of high performance computing applications on the amazon web ser-
vices cloud,” in 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, 2010, pp. 159–168.

[28] S. Coghlan and K. Yelick, “The magellan final report on cloud
computing,” 12 2011. [Online]. Available: https://www.osti.gov/biblio/
1076794

[29] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski,
B. Rountree, M. Schulz, and X. Yuan, “A comparative study of
high-performance computing on the cloud,” in Proceedings of the
22nd International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 239–250. [Online].
Available: https://doi.org/10.1145/2493123.2462919

[30] S. Chang, R. Hood, H. Jin, S. Heistand, J. Chang, S. Cheung,
J. Djomehri, G. Jost, and D. Kokron, “Evaluating the Suitability of Com-
mercial Clouds for NASA’s High Performance Computing Applications:
A Trade Study,” NASA NAS Technical Report, vol. 1, no. May, pp. 1–46,
2018.

[31] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F.
Cunha, and R. Buyya, “Hpc cloud for scientific and business
applications: Taxonomy, vision, and research challenges,” ACM
Comput. Surv., vol. 51, no. 1, jan 2018. [Online]. Available:
https://doi.org/10.1145/3150224

[32] T. 500, “Top 500 list,” https://www.top500.org/, 2022, accessed: 31-Mar-
2022.

[33] K. Bergman, “Empowering flexible and scalable high performance
architectures with embedded photonics,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2018, pp. 378–
378.

[34] G. Michelogiannakis, Y. Shen, M. Y. Teh, X. Meng, B. Aivazi,
T. Groves, J. Shalf, M. Glick, M. Ghobadi, L. Dennison, and
K. Bergman, “Bandwidth steering in hpc using silicon nanophotonics,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356145

[35] J. L. Cox, “Evolution of Optical Technologies in the Cloud Infrastruc-
ture,” https://www.youtube.com/watch?v=r3GJt7AiGuc, 2022, accessed:
31-Mar-2022.

[36] Microsoft, “High performance computing VM sizes,” https://docs.
microsoft.com/en-us/azure/virtual-machines/sizes-hpc, 2022, accessed:
31-Mar-2022.

[37] ——, “Adaptive Routing on Azure HPC ,” https://techcommunity.
microsoft.com/t5/azure-compute-blog/adaptive-routing-on-azure-hpc/
ba-p/1205217, 2022, accessed: 11-Mar-2022.

[38] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs,
D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Docauer, J. Alpert, J. Ai,
J. Olson, K. DeCabooter, M. De Kruijf, N. Hua, N. Lewis, N. Kasinad-
huni, R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter, U. Naik, and
A. Vahdat, “Andromeda: Performance, isolation, and velocity at scale
in cloud network virtualization,” in Proceedings of the 15th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’18. USA: USENIX Association, 2018, p. 373–387.

https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://cloud.google.com/tpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://doi.org/10.1145/2063348.2063363
https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1145/2785956.2787508
https://doi.org/10.1145/2535372.2535375
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/3295500.3356196
https://doi.org/10.1145/3126908.3126926
https://doi.org/10.1145/3458817.3487399
https://www.osti.gov/biblio/1076794
https://www.osti.gov/biblio/1076794
https://doi.org/10.1145/2493123.2462919
https://doi.org/10.1145/3150224
https://www.top500.org/
https://doi.org/10.1145/3295500.3356145
https://www.youtube.com/watch?v=r3GJt7AiGuc
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://techcommunity.microsoft.com/t5/azure-compute-blog/adaptive-routing-on-azure-hpc/ba-p/1205217
https://techcommunity.microsoft.com/t5/azure-compute-blog/adaptive-routing-on-azure-hpc/ba-p/1205217
https://techcommunity.microsoft.com/t5/azure-compute-blog/adaptive-routing-on-azure-hpc/ba-p/1205217

[39] Forbes, “Oracle Cloud Had A Banner 2021 And Is Very
Credible,” https://www.forbes.com/sites/patrickmoorhead/2022/02/
08/oracle-cloud-had-a-banner-2021-and-now-very-credible/, 2022,
accessed: 30-Jun-2022.

[40] A. Froidmont, “Running Applications on Oracle Cloud Using
Cluster Networking,” https://blogs.oracle.com/cloud-infrastructure/post/
running-applications-on-oracle-cloud-using-cluster-networking, 2022,
accessed: 30-Jun-2022.

[41] S. N. S. Centre, “Pricing: Pay-As-You-Go Service,” https://2go.cscs.ch/
offering/pricing/, 2022, accessed: 02-May-2022.

[42] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series
network,” Cray Inc., White Paper WP-Aries01-1112, 2012.

[43] E. Suarez, A. Kreuzer, N. Eicker, and T. Lippert, The DEEP-EST
project, ser. Schriften des Forschungszentrums Jülich IAS Series.
Jülich: Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag,
2021, vol. 48, pp. 9–25. [Online]. Available: https://juser.fz-juelich.de/
record/905812

[44] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing. ACM, Jun. 2010, pp. 597–604.

[45] SPCL, “LogGOPSim simulator,” https://github.com/spcl/LogGOPSim,
2022, accessed: 31-Mar-2022.

[46] Amazon, “Amazon AWS,” https://aws.amazon.com/, 2022, accessed: 11-
Mar-2022.

[47] Google, “Google GCP,” https://cloud.google.com/, 2022, accessed: 11-
Mar-2022.

[48] Microsoft, “Microsoft Azure,” https://azure.microsoft.com/, 2022, ac-
cessed: 11-Mar-2022.

[49] Oracle, “Oracle Cloud Infrastructure,” https://www.oracle.com/cloud/,
2022, accessed: 11-Mar-2022.

[50] Swiss National Supercomputing Centre, “Piz Daint Supercomputer,”
https://www.cscs.ch/computers/piz-daint/, 2022, accessed: 11-Mar-2022.

[51] ——, “Alps Supercomputer,” https://www.cscs.ch/computers/alps/,
2022, accessed: 06-May-2022.

[52] Amazon, “Aws parallelcluster user guide,” https://docs.aws.amazon.com/
parallelcluster/latest/ug/cluster-definition.html#base-os, 2022, accessed:
31-Mar-2022.

[53] Microsoft, “Centos-hpc vm images,” https://docs.microsoft.
com/en-us/azure/virtual-machines/workloads/hpc/configure#
centos-hpc-vm-images, 2022, accessed: 31-Mar-2022.

[54] Google, “Creating an hpc-ready vm instance,” https://cloud.google.com/
compute/docs/instances/create-hpc-vm, 2022, accessed: 31-Mar-2022.

[55] Jülich Supercomputing Centre, “DEEP-EST System Overview,”
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User Guide/
System overview, 2022, accessed: 06-May-2022.

[56] P. MacArthur, Q. Liu, R. D. Russell, F. Mizero, M. Veeraraghavan, and
J. M. Dennis, “An integrated tutorial on infiniband, verbs, and mpi,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2894–
2926, 2017.

[57] Amazon, “Aws nitro card,” https://aws.amazon.com/ec2/nitro/, 2022,
accessed: 31-Mar-2022.

[58] Intel, “ Accelerating High-Speed Networking with Intel
I/OAT,” https://www.intel.com/content/dam/doc/white-paper/
i-o-acceleration-technology-paper.pdf, 2022, accessed: 11-Mar-2022.

[59] G. Cloud, “N2, N2D, C2, and C2D higher bandwidth configu-
ration,” https://cloud.google.com/compute/all-pricing#high bandwidth
configuration, 2022, accessed: 02-May-2022.

[60] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm, “Netgauge: A
Network Performance Measurement Framework,” in Proceedings of
High Performance Computing and Communications, HPCC’07, vol.
4782. Springer, Sep. 2007, pp. 659–671.

[61] Amazon, “Amazon EC2 instance network bandwidth,”
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ec2-instance-network-bandwidth.html, 2022, accessed: 11-Mar-2022.

[62] OpenMPI, “FAQ: Tuning the run-time characteristics of MPI
TCP communications,” https://www.open-mpi.org/faq/?category=tcp#
tcp-multi-links, 2022, accessed: 11-Mar-2022.

[63] Microsoft, “Fsv2 series,” https://docs.microsoft.com/en-us/azure/
virtual-machines/fsv2-series, 2022, accessed: 31-Mar-2022.

[64] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in SC
’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomput-
ing, 2008, pp. 1–12.

[65] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the influ-
ence of system noise on large-scale applications by simulation,” in SC
’10: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, 2010,
pp. 1–11.

[66] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“Loggp: Incorporating long messages into the logp model for
parallel computation,” Journal of Parallel and Distributed Computing,
vol. 44, no. 1, pp. 71–79, 1997. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0743731597913460

[67] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: Performance degradation due to nearby jobs,” in SC
’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[68] T. Hoefler, C. Siebert, and A. Lumsdaine, “Group Operation Assembly
Language - A Flexible Way to Express Collective Communication,” in
ICPP-2009 - The 38th International Conference on Parallel Processing.
IEEE, Sep. 2009.

[69] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” ACM Comput. Surv.,
vol. 52, no. 4, aug 2019. [Online]. Available: https://doi.org/10.1145/
3320060

[70] Intel, “Benchmarking GEMM on Intel Architecture Processors,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
benchmarking-gemm-with-intel-mkl-and-blis-on-intel-processors.html,
2022, accessed: 31-Mar-2022.

[71] I. Sadooghi, J. H. Martin, T. Li, K. Brandstatter, K. Maheshwari, T. P. P.
de Lacerda Ruivo, G. Garzoglio, S. Timm, Y. Zhao, and I. Raicu,
“Understanding the performance and potential of cloud computing for
scientific applications,” IEEE Transactions on Cloud Computing, vol. 5,
no. 2, pp. 358–371, 2017.

[72] M. Mohammadi and T. Bazhirov, “Comparative benchmarking of cloud
computing vendors with high performance linpack,” in Proceedings of
the 2nd International Conference on High Performance Compilation,
Computing and Communications, ser. HP3C. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1–5. [Online].
Available: https://doi.org/10.1145/3195612.3195613

[73] R. Aljamal, A. El-Mousa, and F. Jubair, “Benchmarking microsoft
azure virtual machines for the use of hpc applications,” in 2020 11th
International Conference on Information and Communication Systems
(ICICS), 2020, pp. 382–387.

[74] A. Fernandez, “Evaluation of the performance of tightly coupled parallel
solvers and mpi communications in iaas from the public cloud,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2021.

[75] Network-Based Computing Laboratory - Ohio State University, “OSU
Microbenchmarks,” http://mvapich.cse.ohio-state.edu/benchmarks/,
2022, accessed: 31-Mar-2022.

[76] Intel, “Intel MPI Benchmarks,” https://www.intel.com/content/www/us/
en\/developer/articles/technical/intel-mpi-benchmarks.html, 2022, ac-
cessed: 31-Mar-2022.

[77] T. Groves, Y. Gu, and N. J. Wright, “Understanding performance
variability on the aries dragonfly network,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), 2017, pp. 809–813.

[78] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg,
and T. Hoefler, “Efficient task placement and routing of nearest
neighbor exchanges in dragonfly networks,” in Proceedings of the
23rd International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 129–140. [Online].
Available: https://doi.org/10.1145/2600212.2600225

APPENDIX A
SIMULATOR VALIDATION

We repeated the validation process described in Sec. V-A
on 4 and 8 nodes and, for the instance types where this was
possible, also on 32 nodes (not all the providers sufficiently
increased our quota limits to enable the creation of a cluster
with 32 nodes). We report the results for 4, 8, and 32 nodes in
Figure 18, Figure 19, and Figure 20 respectively. Similarly to
the results shown in Sec. V-A, we observe that the simulated
runtime closely matches the measured one.

https://www.forbes.com/sites/patrickmoorhead/2022/02/08/oracle-cloud-had-a-banner-2021-and-now-very-credible/
https://www.forbes.com/sites/patrickmoorhead/2022/02/08/oracle-cloud-had-a-banner-2021-and-now-very-credible/
https://blogs.oracle.com/cloud-infrastructure/post/running-applications-on-oracle-cloud-using-cluster-networking
https://blogs.oracle.com/cloud-infrastructure/post/running-applications-on-oracle-cloud-using-cluster-networking
https://2go.cscs.ch/offering/pricing/
https://2go.cscs.ch/offering/pricing/
https://juser.fz-juelich.de/record/905812
https://juser.fz-juelich.de/record/905812
https://github.com/spcl/LogGOPSim
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://www.oracle.com/cloud/
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/alps/
https://docs.aws.amazon.com/parallelcluster/latest/ug/cluster-definition.html#base-os
https://docs.aws.amazon.com/parallelcluster/latest/ug/cluster-definition.html#base-os
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/configure#centos-hpc-vm-images
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/configure#centos-hpc-vm-images
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/configure#centos-hpc-vm-images
https://cloud.google.com/compute/docs/instances/create-hpc-vm
https://cloud.google.com/compute/docs/instances/create-hpc-vm
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/System_overview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/System_overview
https://aws.amazon.com/ec2/nitro/
https://www.intel.com/content/dam/doc/white-paper/i-o-acceleration-technology-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/i-o-acceleration-technology-paper.pdf
https://cloud.google.com/compute/all-pricing#high_bandwidth_configuration
https://cloud.google.com/compute/all-pricing#high_bandwidth_configuration
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://www.open-mpi.org/faq/?category=tcp#tcp-multi-links
https://www.open-mpi.org/faq/?category=tcp#tcp-multi-links
https://docs.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://www.sciencedirect.com/science/article/pii/S0743731597913460
https://www.sciencedirect.com/science/article/pii/S0743731597913460
https://doi.org/10.1145/3320060
https://doi.org/10.1145/3320060
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-gemm-with-intel-mkl-and-blis-on-intel-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-gemm-with-intel-mkl-and-blis-on-intel-processors.html
https://doi.org/10.1145/3195612.3195613
http://mvapich.cse.ohio-state.edu/benchmarks/
https://www.intel.com/content/www/us/en\/developer/articles/technical/intel-mpi-benchmarks.html
https://www.intel.com/content/www/us/en\/developer/articles/technical/intel-mpi-benchmarks.html
https://doi.org/10.1145/2600212.2600225

Daint Alps DEEP-EST Azure Azure
(200 Gb/s)

AWS GCP Oracle
0

10

20

30

40

50

60

Ti
m

e
(u

s)
Dissemination

Simulated
Real

Daint Alps DEEP-EST Azure Azure
(200 Gb/s)

AWS GCP Oracle
0

2000

4000

6000

8000

Ti
m

e
(u

s)

Ring
Simulated
Real

Fig. 18. Comparison between measured (on HPC instances) and simulated times for 16B on dissemination and 16MiB ring collectives on 4 nodes. Black
vertical lines at the top of the boxes represent the 95% confidence interval.

Daint Alps DEEP-EST Azure Azure
(200 Gb/s)

AWS GCP Oracle
0

20

40

60

80

Ti
m

e
(u

s)

Dissemination
Simulated
Real

Daint Alps DEEP-EST Azure Azure
(200 Gb/s)

AWS GCP Oracle
0

2000

4000

6000

8000

Ti
m

e
(u

s)

Ring
Simulated
Real

Fig. 19. Comparison between measured (on HPC instances) and simulated times for 16B on dissemination and 16MiB ring collectives on 8 nodes. Black
vertical lines at the top of the boxes represent the 95% confidence interval.

APPENDIX B
CLUSTERS PROVISIONING TIME

A cluster composed of 2 HPC instances can be provisioned
in 22 minutes on Azure, AWS, and Oracle. On the other hand,
on GCP this requires less than 1 minute. However, it is worth
remarking that on Azure, AWS, and Oracle, the cluster is
already provisioned with Slurm and with many software pack-
ages often needed for running HPC applications (MPI, Intel
MKL, etc...). On the other hand, on GCP everything needs to
be installed and configured from scratch and, eventually, the
time required to have a fully provisioned cluster is similar on
all the four cloud providers.

Daint Alps DEEP-EST Azure
(200 Gb/s)

AWS
0

25

50

75

100

125

150

Ti
m

e
(u

s)

Dissemination
Simulated
Real

Daint Alps DEEP-EST Azure
(200 Gb/s)

AWS
0

1000

2000

3000

4000

5000

6000
Ti

m
e

(u
s)
Ring

Simulated
Real

Fig. 20. Comparison between measured (on HPC instances) and simulated times for 16B on dissemination and 16MiB ring collectives on 32 nodes. Black
vertical lines at the top of the boxes represent the 95% confidence interval.

	I Introduction
	II HPC in the Cloud
	II-A Instances, CPUs, and OS
	II-B Network
	II-C Cost

	III Network Performance
	III-A Bandwidth Saturation
	III-B Unidirectional Bandwidth and Latency
	III-C Bidirectional Bandwidth
	III-D Traffic Burstiness
	III-E HPC vs. Normal Compute Instances

	IV Network and OS Noise
	IV-A OS Noise
	IV-B Latency Noise
	IV-C Bandwidth Noise

	V Large-Scale Simulations
	V-A Simulation Setup and Validation
	V-B Analysis of Noise on Dissemination Collectives
	V-C Analysis of Noise on Ring Collectives
	V-D Analysis of Noise Impact on Cost

	VI Discussion
	VI-A Recommendations
	VI-B Limitations

	VII Related Work
	VII-A Cloud Benchmarking
	VII-B Network Noise

	VIII Conclusions
	References
	Appendix A: Simulator Validation
	Appendix B: Clusters Provisioning Time

