
Noname manuscript No.
(will be inserted by the editor)

Improving the performance of Actors on Multi-Cores
with Parallel Patterns

Luca Rinaldi · Massimo Torquati? ·
Daniele De Sensi · Gabriele Mencagli ·
Marco Danelutto

Received: date / Accepted: date

Abstract The Actor-based programming model is largely used in the context
of distributed systems for its message-passing semantics and neat separation
between the concurrency model and the underlying hardware platform. How-
ever, in the context of a single multi-core node where the performance metric
is the primary optimization objective, the “pure” Actor Model is generally not
used because Actors cannot exploit the physical shared-memory, thus reducing
the optimization options. In this work, we propose to enrich the Actor Model
with some well-known Parallel Patterns to face the performance issues of using
the “pure” Actor Model on a single multi-core platform. In the experimental
study, conducted on two different multi-core systems by using the C++ Actor
Framework (CAF), we considered a subset of the Parsec benchmarks and
two Savina benchmarks. The analysis of results demonstrates that the Actor
Model enriched with suitable Parallel Patterns implementations provides a ro-
bust abstraction layer capable of delivering performance results comparable
with those of thread-based libraries (i.e. Pthreads and FastFlow) while
offering a safer and versatile programming environment.

Keywords Actors · Parallel Patterns · Programming Model · Multi-Cores

1 Introduction

The Actor Model (AM) proposed by Hewitt et al. in 1973 [24] is attracting a
revived attention among software developers and academics. In the AM, the

? Corresponding author – E-mail: torquati@di.unipi.it

This work has been partially supported by Univ. of Pisa PRA 2018 66 DECLware: Declar-
ative methodologies for designing and deploying applications

Luca Rinaldi · Massimo Torquati · Daniele De Sensi · Gabriele Mencagli · Marco Danelutto
Computer Science Department
University of Pisa, Italy



2 Luca Rinaldi et al.

concurrent unit is the Actor. Actors are isolated entities with an internal state
that can receive messages from other Actors, perform computations, manage
their internal state, and send messages to other Actors. An Actor can interact
with other Actors only if it knows their logical addresses. Two distinct Actors
do not share any data, so low-level data races are avoided by design. The model
allows a complete separation of the software design from its deployment at run-
time. Notable implementations of the AM are: Akka [4] written in Java/Scala,
Orleans [7] written in C#/.NET, Erlang [5] with its specific language, and
the “C++ Actor Framework” (CAF) entirely written in modern C++ [13].
The message-passing style of non-blocking and asynchronous interactions via
immutable messages among Actors, make the AM particularly attractive for
exploiting the potential parallelism of large distributed systems to target scale-
out scenarios. However, in the context of a single multi-core node where the
application programmer wants to maximize the performance metric of his/her
Actor-based application (i.e. scale-up scenario), the AM is not largely used
because of its performance issues related to the narrow margins offered by
the AM to exploit the physical shared memory of the system. In a way, the
classical (or “pure”) AM trades single node performance for scalability to a
large number of nodes.

Several research efforts tried to overcome the performance issues of the
“pure” AM on the single node by implementing smart techniques at the
Run-Time System (RTS) level, e.g., copy-on-write and locality-aware schedul-
ing [20]. However, none of these specific and low-level optimizations were ca-
pable of significantly increasing the performance of Actor-based applications
on shared-memory platforms at the same level of concurrent libraries designed
explicitly for multi-cores, such as OpenMP, Intel TBB [31], and FastFlow [3].

Some popular library-based implementations of the AM are built on top
of languages that allow shared-memory visibility. Examples are Akka using
Java, and CAF using modern C++. Such implementations cannot enforce
the Actor isolation property [16] because the programmer can always define
some global state that can be shared by some of the Actors. On the one
hand, this gives high flexibility to the programmer allowing him/her to use the
physical shared-memory for tuning and optimizing performance-critical parts
of the Actor-based application. On the other hand, the usage of the shared-
memory exposes the user to potential data races and data inconsistencies
that have to be explicitly handled by the application programmer through
proper synchronizations (either via message exchange or by using locks), which
partially vanishes the programmability benefits of using the “pure” model.

In this work, we aim to increase the performance of the “pure” AM on
multi-cores by leveraging the physical shared-memory without compromis-
ing the Actor’s isolation property and avoiding explicit management of the
shared-memory by the application programmers. The idea is to provide the
Actor programmer with a set of Parallel Patterns (PPs) [30], i.e. high-level
parallel programming abstractions, with a well-defined functional and parallel
semantics that can be used to parallelize a given problem (or a given class
of problems). Examples of PPs are: Pipeline, Map-Reduce, Task-Farm, and



Improving the performance of Actors on Multi-Cores with Parallel Patterns 3

Stencil. To fully integrate PPs in the AM, we propose to implement them as
“macro Actors” so that they look like standard Actors to the programmer.
They interact with other Actors and PPs only by using explicit messages,
and they can be dynamically spawned. The shared-memory and all low-level
platform-specific optimizations, such as reference passing to avoid data copies,
native threads exploitation, and thread-to-cores affinity [32], are used only in
the implementation skeleton of the PP and they are entirely transparent to
the application programmer. Therefore, a PP behaves like a standard Actor,
but its internal implementation, based on concurrent Actors, does not neces-
sarily comply to the “pure” AM. Moreover, since the implementation schemes
of PPs are provided to the user as a library with suitable APIs, this enables
the separation of concerns software design principle between the application
programmer and the patterns provider. The application programmer has the
responsibility to select the proper PP, whereas the patterns provider has the
responsibility to produce an efficient and memory-safe implementation of PPs.

We implemented PPs as an open-source library for the “C++ Actor Frame-
work” [12] (CAF). We validate our approach over a set of applications cho-
sen according to the computational model that the PPs implement (e.g., Di-
vide&Conquer, Map, Pipeline, Farm). In particular, we consider QuickSort
and Recursive Matrix Multiplication from the Savina benchmark suite and
blackscholes, ferret, canneal, and raytrace from the Parsec benchmark
suite. The results obtained by running the benchmarks on two different multi-
core platforms (Intel Xeon and IBM Power8), demonstrate that the AM en-
riched with a proper set of PPs provides an enhanced programming model
capable of delivering performance results comparable with those obtained by
thread-based libraries (i.e. Pthreads and FastFlow [3]) on multi-cores while
offering a safer and more flexible programming environment.

The remaining of this paper is organized as follows: Section 2 provides the
background information. Section 3 describes the design and implementation
of the PPs, Section 4 describes and discusses the results obtained during the
experimental phase. Section 5 presents related works and Section 6 summarizes
the main results.

2 Background

In this section, we provide the necessary background to understand the contri-
butions of this work. Specifically, we summarize the main concepts of the Actor
Model and of the Parallel Pattern approach to parallel programming. Finally,
we provide an overview of the CAF framework that we used for implementing
the PPs presented in Section 3.

The Actor Model. The Actor Model is a concurrent programming model
first proposed by Hewitt et al. [24] in the context of Artificial Intelligence to
model systems with thousands of independent processors, each having a lo-
cal memory and connected through some high-performance network. Later,
the AM has been formalized by Agha et al. [1, 2]. In the AM, every distinct



4 Luca Rinaldi et al.

execution flow is considered an Actor. Actors are uniquely identified by an
opaque identifier (address) so that they can be addressed during send oper-
ations. Actors can dynamically spawn other Actors. They do not share data,
and the only way to observe or modify the internal state of an Actor is through
explicit messages. Each Actor has a private mailbox of unbounded capacity,
which stores an ordered set of messages received by that Actor. However, there
is no guarantees on the processing order of messages. The messages can be sent
to any other Actor that processes them asynchronously and sequentially. The
memory isolation, the message-passing style of communication, and the serial
execution of messages, allow to eliminate the use of locks when the AM is em-
ployed on shared-memory systems. Synchronization is achieved only through
the exchange of messages. In principle, in this model, the programmer is not
aware of the underlying platform, therefore the Run-Time System (RTS) is
the only responsible for the efficient execution of Actors.

Pattern-based parallel programming. One of the approaches for raising
the level of abstraction in parallel computing is based on the concepts of Paral-
lel Patterns [30] and Algorithmic Skeletons [15], which are schemes of parallel
computations that recur in many applications and algorithms. These paral-
lel abstractions are made available to programmers as high-level programming
constructs with a well-defined functional and extra-functional semantics. Each
parallel pattern has one or more implementation schema (often called imple-
mentation skeleton) on the basis of the parallel platform considered. Different
models of communications synchronizations and coordination for the tasks ex-
ecution can be used to implement a given pattern. Notable examples of PPs
are Pipeline, Map, Map-Reduce, Task-Farm, Divide&Conquer. Combinations
of PPs and Algorithmic Skeletons are used in several programming frame-
works and libraries such as Microsoft PPL [11], Intel TBB [31], SkEPU [18]
and FastFlow [3].

The CAF library. The C++ Actor Framework (CAF) is an Actor-based
framework implemented in modern C++ [12,13]. Actors are modeled as light-
weight state machines that are mapped onto a fixed set of RTS threads called
Workers. Instead of assigning dedicated threads to Actors, the CAF RTS in-
cludes a scheduler (which implements a Work-Stealing algorithm) that dynam-
ically allocates ready Actors to Workers. Whenever a waiting Actor receives
a message, it changes its internal state and the scheduler assigns the Actor to
one of the Worker threads for its execution.

In CAF, Actors are created using the spawn function, which can create
an Actor from a function, or a class. It returns a network-transparent Actor
handle corresponding to the Actor address. Communication happens via ex-
plicit message-passing by using the send command. Messages are buffered into
the mailbox of the receiver Actor in arrival order. The response to an input
message can be implemented by defining a set of behaviors each of which is a
C++ lambda function.

Actors using blocking system calls (e.g., I/O functions) might suspend a
RTS thread creating either imbalance in the workload or starvation. To solve



Improving the performance of Actors on Multi-Cores with Parallel Patterns 5

these issues, CAF provides detached Actors that will be executed by a dedi-
cated OS thread, instead of the Work-Stealing scheduler. Although detached
Actors have their private executors, they implement the same event-based pro-
tocol for the execution of mailbox messages as the default lightweight Actors
(the default Actors are also called scheduled Actors). When a detached Actor is
spawned, a new OS thread is created. This increases the management costs of
these Actors if compared with scheduled Actors, but it enables more flexibility
and full control of the Actor scheduling and of its processor affinity [32].

3 Designing Parallel Patterns as Actors

Actor-based applications are characterized by unstructured communication
graphs where Actors are often created dynamically and have a short life-span.
Besides, it has been observed that, in many Actors-based applications, a small
number of Actors (called hub Actors) exchange significantly more messages
than the other ones composing the application [20].

By means of PPs abstractions, we want to bring a communication struc-
ture in Actor-based applications, and to enable some optimizations, which
are generally not allowed by the “pure” AM without breaking the principles
of the model itself (e.g., sharing a data structure by exploiting the physical
shared-memory). During the design of PPs, we used the following guidelines:

– PPs must smoothly integrate with existing Actors;
– PPs interface must comply with the AM;
– to maximize the performance, the implementation skeletons of PPs could

not necessarily respect the AM, and they can rely on all low-level features
and mechanisms offered by the shared-memory platform.

We designed the PPs in such a way that they look like standard Actors, i.e.,
they receive input data only through messages and produce results by send-
ing messages to other Actors. Instead, their implementation skeletons use the
shared-memory concurrency model. We decided to implement these PPs by
leveraging the Actors provided by the CAF library without introducing an-
other model/library (i.e., OpenMP or FastFlow) to avoid issues of mixing
different RTSs (e.g., defining the number of threads of each RTS, handling
different affinity policies, handling different scheduling of tasks). Therefore, a
pattern in the PPs library is implemented by spawning a set of CAF Actors
cooperating in a predefined communication scheme through explicit messages
and shared memory variables. Moreover, CAF offers the option of spawning
Actors also as private threads (i.e. detached Actors), thus enabling the pos-
sibility to control Actors directly without using the Work-Stealing scheduler
(which is used instead for scheduled Actors). This permits to avoid the indi-
rection between the logical Actor entity and the underline RTS threads used
to execute Actors, which, sometimes, may introduce extra overhead.

In the following, we discuss the implementation of a set of PPs1 imple-
mented on top of the CAF framework, dividing them in two sets: Data-

1 The implementations are available at https://github.com/ParaGroup/caf-pp.

https://github.com/ParaGroup/caf-pp


6 Luca Rinaldi et al.

parallel PPs namely Map, Divide&Conquer ; and Control-parallel PPs namely
Seq, Pipeline, and Farm. The first set of patterns internally exploits shared-
memory to optimize the performance. The second set enables nesting and
composition of PPs focusing more on structuring the concurrent graph of Ac-
tors and PPs.

3.1 Data-parallel PPs

Map. The Map pattern is a data-parallel paradigm that applies the same
function to every element of an input collection. The input collection of data,
possibly but not necessarily coming from a stream of collections, is split into
multiple sub-collections where each one can be computed in parallel by apply-
ing the same function. The results produced are collected in one single output
collection, usually having the same type and size of the input.

The efficiency of the Map pattern on multi-cores depends on the ability to
share the input collection on which the user function has to be applied. Data
races are avoided by design because the parallel semantics of the Map pat-
tern is such that distinct concurrent entities work on disjoint sub-collections.
Data sharing has the advantage of avoiding costly data copies required by the
message-passing model.

Figure 1 shows the implementation skeleton of the Map pattern. It uses
a “master” entity, called Sched, which is in charge of partitioning the input
collection and scheduling data partitions toward a pool of Worker entities. The
Sched also waits for the end of the computation of the Workers to implement
a barrier before sending out the final result.

Listing 1 shows how to configure and spawn a Map pattern with the PP
library. The user provides a C++ lambda function that works in-place on a
specific range of elements of the input collection implemented with a container.
Both the number of internal Workers and the scheduling policy are two op-
tional parameters. The first, if not set, is equal to the number of active cores;
the second parameter can be set to either static assignment of partitions (the
default value) or dynamic assignment of partitions.

The static scheduling policy splits the input collection into several parti-
tions equal to the number of Workers. The Sched Actor sends the references
of each partition to the corresponding Worker. This policy works well when
the computational workload is equally (or almost equally) distributed among
all elements of the input collection. The dynamic scheduling policy, instead,
is supposed to be used when a static partitioning of the input collection may
lead to serious workload balancing issues among Workers.

The dynamic policy gets as argument a user-defined chunk size used to split
the input collections. Then, chunks of data elements are dynamically fetched
by the Workers leveraging the C++ std::atomic data type implementing an
atomic counter shared by all Workers and initialized by the Sched Actor. It
is worth to remark that the shared atomic counter is used only to implement
the scheduling policy, and it is visible only to the Worker Actors implementing
the Map pattern, which are not defined by the application programmer.



Improving the performance of Actors on Multi-Cores with Parallel Patterns 7

1 using Cnt = std::vector<int64_t>;

2 auto map = Map<Cnt>([](auto range) {

3 for (int64_t &el : range) {

4 // do somethings with el

5 }

6 }).replicas(3)

7 .scheduler(PartitionSched::static_())

8 //.scheduler(PartitionSched::dynamic {1})
9 .runtime(Runtime::actors);

10 //.runtime(Runtime::threads);

11 auto p = spawn_pattern(sys, map).value();

Fig. 1: The Map pattern implemen-
tation scheme.

Listing 1: The code to build and spawn the Map
pattern.

The Sched Actor initializes the atomic counter to zero and sends a first
message to all Workers containing the size of the collection and the number of
elements to fetch each time the shared variable is accessed (i.e. the computa-
tion granularity). Each Worker executes a fetch add atomic operation on the
shared variable to retrieve the next range of contiguous collection elements to
compute. The computation finishes when all Actors retrieve a range of collec-
tion elements whose iterator indexes are greater than or equal to the number
of elements in the collection. Then, the Workers notify the Sched Actor of
their work completion by sending an appropriate message.

CAF enforces the Actor isolation property by calling the C++ copy con-
structor on those message objects sent to more than one destination Actors,
which do not use the input message in read-only mode (i.e. non-constant in-
put data types). To work in-place (i.e. in a read-write mode) on message types
that are input collections, the Map PP inhibits those implicit copies to enable
the sharing of the same collection to multiple Workers. To this end, we de-
fined a C++ type, called NsType, which internally manages a heap-allocated
data and implements the copy constructor without effectively doing a memory
copy. The Sched Actor moves the user input collection inside a NsType ob-
ject, and then sent it to the Workers. After the computation, the Sched Actor
executes the same steps in the reverse order and produce the output result.
This implementation guarantees that the shared-memory layer inside the PP
is transparent to the application programmer.

Divide&Conquer In Divide and Conquer (D&C) algorithms, during the Di-
vide (or Split) phase, the problem is recursively decomposed into smaller sub-
problems building a tree of calls. In the Conquer (or Merge) phase, the partial
results produced by the solution of the sub-problems at a given level of the tree
are adequately combined to build the final result. A D&C algorithm can be
parallelized by executing, on different CPU cores, the Split and Merge phases



8 Luca Rinaldi et al.

for those sub-problems that do not have a direct dependency in the recursion
tree. At each level of the tree, a new set of concurrent tasks is available to be
executed up to the point where the sub-problems are small enough that it is
more convenient to compute them using the sequential algorithm.

As shown in Figure 2, we implemented this pattern by dynamically spawn-
ing CAF Actors, which recursively spawn new Actors for each sub-problem
produced by the divide function. The Actor spawned evaluates the condition
function. If this function returns false, the divide function is called. If it eval-
uates to true (e.g., when the size of the sub-problem is smaller than a given
cut-off value), the sequential algorithm is called, and the partial result pro-
duced is returned back to the spawning Actor. The generic spawning Actor
waits for all partial results, and then it executes the merge function whose
result will be sent to its spawning Actor, and then it terminates. The DivConq
implementation skeleton uses the physical shared-memory to avoid unneces-
sary data copies during the dynamic spawning of Actors, which work in-place
on different input ranges by using the same techniques described for the Map.

1 auto div = [](Rng&)-> vector<Rng> {

2 // divide the input

3 };

4 auto merg = [](vector<Rng>&)-> Rng {

5 // merge the partial results

6 };

7 auto seq = [](Rng&) {

8 // base case

9 };

10 auto cond = [cutoff](const Rng&)-> bool {

11 // splitting condition

12 };

13 DivConq<Cnt> dc(div, merg, seq, cond);

14 auto p = spawn_pattern(sys, dc).value();

Fig. 2: The DivConq pattern imple-
mentation scheme.

Listing 2: The code to build and spawn the Div-
Conq pattern.

Listing 2 shows the interface of the DivConq PP. The pattern is created by
passing a user defined Container and four functions that work on continuous
portions of the input container called Ranges (Rng in Listing 2).

3.2 Control-parallel PPs

Seq. The Seq (Sequential) represents a single concurrent entity and it is useful
to integrate within the PPs library a custom Actor implemented by the user.



Improving the performance of Actors on Multi-Cores with Parallel Patterns 9

The Seq pattern can be seen as a factory of a specific CAF Actor. It allows
to spawn different copies of the same Actors and to use them in different
points of a PPs composition. In the left-hand side of Figure 3 there is the
implementation scheme of the Seq pattern. The right-hand side of Figure 3
shows two ways of creating a Seq pattern from an existing Actor type MyAct.
In the first case (line 1) the Actor will be initialized without any parameter.
In the second case (line 2), the user provides a callback that will be called as
soon as the user Actor will be spawned to initialize it.

1 Seq<MyAct> seq1; // with no initialization

2 Seq<MyAct> seq2([&](caf::actor a)

3 { caf::anon_send(a, par1, par2); }); // with initialization

Fig. 3: The Seq pattern implementation scheme (right). The example code for building a
Seq by using the MyAct CAF Actor (left).

1 Seq<MyAct1> s1;

2 Map<Cnt>([](auto range){/*...*/}) s2;

3 Seq<MyAct2> s3;

4 Pipeline pipe(s1, s2, s3);

5 auto p = spawn_pattern(sys, pipe)

6 .value();

Fig. 4: The Pipeline pattern implementa-
tion schema (top). An example code for
building and spawning an instance of a
three-stage pipeline (bottom).

1 Seq<Worker> worker;

2 auto farm = Farm(worker).replicas(N)

3 .policy(round_robin());

Fig. 5: The Farm pattern implementation
schema (top). An example code for building
a Farm pattern with N sequential Workers
and the round-robin policy (bottom).

Pipeline. A pipeline pattern is a sequence of stages connected in a linear
chain. Distinct stages of the same chain work in parallel on subsequent input
elements (usually called stream of items). Each stage computes a partial result
and sends it to the next stage of the sequence. The stages of the Pipeline
pattern can be any sequence of PPs presented in this section, as shown in
Figure 4. The Pipeline takes care to connect each stage in the correct order.

Farm. A Farm pattern is composed of a pool of concurrent entities called
Workers executing in parallel on different data elements of the input stream.
Input elements are forwarded to the Workers according to some predefined



10 Luca Rinaldi et al.

scheduling policy (e.g., round-robin, random, etc.), or using a user-defined
policy. Precisely, the Farm pattern replicates a given number of times the
PP provided as an argument. As for the Pipeline, the argument can be any
valid combination of the patterns presented in this section. The number of
replicas can be left unspecified, meaning that a default value will be used
(e.g., the number of active CPU cores). Finally, it is also possible to customize
the scheduling policy for the input messages by defining a function with a
specific signature. Figure 5 shows both the internal implementation scheme of
the Farm pattern and a simple example code for instantiating it.

3.3 Composition of Parallel Patterns

The patterns in the PPs library, can be composed to build more complex
computation structures. Specifically, the Farm and Pipeline patterns can have
as internal elements any patterns, while Seq, Map and Divide&Conquer are
leaf-nodes of the skeleton tree composition and they cannot contain other
patterns.

Fig. 6: Composition of two Farms using a Pipeline pattern. The first Farm has a Map
pattern replica as Worker, whereas the second Farm uses Pipeline of Seq as Workers.

Figure 6 exemplifies how a pattern composition can be used inside of an
Actor-based application. The Pipeline pattern is fed by two standard Actors,
and the results produced by the Workers of the second Farm pattern (i.e. by
the last stage of each Pipeline Workers) are sent to another standard Actor of
the application through messages.

4 Evaluation

The experiments were conducted on two different multi-cores (Xeon and Power8)
considering a subset of Savina [26], and Parsec [8] benchmarks.



Improving the performance of Actors on Multi-Cores with Parallel Patterns 11

Xeon. A dual-socket Intel E5-2695 Ivy Bridge CPUs running at 2.40GHz and
featuring 24 cores (12 per socket). Each hyper-threaded core has 32 KB private
L1, 256 KB private L2 and 30 MB of L3 shared cache. The machine has 64
GB of DDR3 RAM, using Linux 3.14.49 x86 64 with the CPUfreq performance
governor enabled. Available compiler gcc version 7.2.0.

Power8. A dual-socket IBM server 8247-42L with two Power8 processors each
with ten cores organized in two CMPs of 5 cores working at 3.69GHz. Each
core (8-way SMT) has private L1d and L2 caches of 64 KB and 512 KB, and
a shared on-chip L3 cache of 8 MB per core. The total number of cores is 20
physical and 160 logical. The machine has 64 GB of RAM, using Linux 4.4.0-47
ppc64 shipped with Ubuntu 16.04. Available compiler gcc version 8.2.0.

Savina. It is a set of benchmarks specifically conceived for evaluating AM im-
plementations. They can be classified in three categories: i) micro-benchmarks,
ii) concurrency benchmarks, and iii) parallelism benchmarks. The first set con-
tains simple benchmarks dedicated to test specific features of the Actor RTS
(e.g., time to spawn an Actor). The second set contains classical concurrency
problems (e.g., Dining-Philosophers). The third set includes applications that
demand more computation (e.g., Matrix Multiplication). We selected two ap-
plications of the parallelism benchmarks set, namely quicksort and recMM2,
because they are both implemented using recursive algorithms (which are not
present in the Parsec benchmarks), and because they are well-known prob-
lems with a straightforward implementation in the “pure” Actor Model.

Parsec. It is a collection of several complex parallel applications for shared-
memory architectures with high system requirements. Indeed, they are real
applications covering many different domains such as streaming applications,
scientific computing, computer vision, data compression and so forth. Recently,
the Parsec benchmarks have been used to compare and assess programming
models targeting multi-cores [14,17]. For testing the PPs library , we selected
ferret, blackscholes, raytrace and canneal benchmarks3. The first one
is a data streaming application, whereas blackscholes and raytrace are
two data-parallel applications with different computational granularity and
different workload balancing issues. The last one is a fine-grained master-
worker computation.

All experiments have been executed multiple times and the average value
obtained has been used to compute the speedup reported in the folloowing
plots. The standard deviation is generally low and not reported in the plots.

In the next two subsections, we first highlight the performance problems of
using the “pure” AM on multi-core platforms and how the PPs proposed can
be used to significantly improve the performance without breaking the model.
Then, by using the Parsec benchmarks, we compare the performance of the
PPs library with that obtained by using the native Pthreads implementation
shipped with Parsec, and the FastFlow implementation that uses the same

2 Application code available at https://github.com/ParaGroup/caf-pp
3 Application code available in the P3ARSEC repository at https://github.com/

ParaGroup/p3arsec

https://github.com/ParaGroup/caf-pp
https://github.com/ParaGroup/p3arsec
https://github.com/ParaGroup/p3arsec


12 Luca Rinaldi et al.

PPs approach to parallelize the benchmarks. It is worth to remark that the
FastFlow performance of Parsec benchmarks has been already compared
with other specialized frameworks on multi-cores demonstrating comparable
(and in some cases better) overall performance [17].

 2.8

 3

 3.2

 3.4

 3.6

10M 50M 100M

Im
p

ro
v
e

m
e

n
t

Input array size

Quicksort - Parallel Pattern Improvement - Xeon

x2.8 x2.8

x3.4

 2.8

 3

 3.2

 3.4

 3.6

10M 50M 100M

Im
p

ro
v
e

m
e

n
t

Input array size

Quicksort - Parallel Pattern Improvement - Power8

x3 x3

x3.5

Fig. 7: Improvement of the PPs version compared to the “pure” AM version of the quicksort
benchmark on the Xeon and Power8 platforms.

4.1 “Pure” Actor Model vs Actors+Parallel Patterns

Here we compare the performance of the “pure” AM with the AM enriched
with the PPs library. We consider quicksort and recMM from Savina bench-
marks, and blackscholes from the Parsec benchmark suite. The quicksort
application implemented in the Savina benchmark follows the “pure” AM
semantics. There are not shared variables among Actors. During the Split
and the Merge phases of the recursive algorithm, the sub-vectors are copied
both before sending them to the spawned Actors and when the results come
back. Instead, in the DivConq pattern implementation, the internal pattern
shared-memory is used to work in-place on the original input vector avoiding
unnecessary copies.

Figure 7 shows the performance improvement of the PPs approach with
respect to the “pure” AM implementation of the quicksort, considering dif-
ferent size of the input vector, i.e. 10M, 50M, and 100M elements, and a fixed
cut-off value of 2, 000 elements. As expected the performance improvement
increases with the vector size, because of the overhead of copying message
data in the Savina implementation. The two versions have roughly the same
maximum scalability (namely ∼3.5 on the Xeon and ∼4.2 on the Power8), but
very different maximum speedup (3.7 vs 1.0 on the Xeon, and 4.2 vs 1.0 on the
Power8, for the PPs version vs the “pure” AM implementation, respectively).

Differently from the quicksort application, the recMM implementation in
the Savina benchmarks does not use a “pure” AM implementation. In fact,
all Actors share both the two input matrices as well as the resulting matrix. In
this case, messages are used as a synchronization mechanism for accessing the
shared data. We implemented the application using the DivConq PP which



Improving the performance of Actors on Multi-Cores with Parallel Patterns 13

 4

 6

 8

 10

 12

 14

24 48

Im
p

ro
v
e

m
e

n
t

Number of cores

Blackscholes - Parallel Pattern Improvement - Xeon

x9.7

x12.9

 4

 6

 8

 10

 12

 14

20 160

Im
p

ro
v
e

m
e

n
t

Number of cores

Blackscholes - Parallel Pattern Improvement - Power8

x4.4

x11.8

Fig. 8: Improvement of the PPs version compared to the “pure” AM version of the black-

scholes benchmark on the Xeon and Power8 platforms.

allows us to confine in a cleaner way the Actors that share the data. As ex-
pected, the patterned version and the Savina version perform almost the same
(both obtain a maximum speedup of more than 22 on both platforms, by using
matrices of 4, 096 × 4, 096 elements and a cut-off value of 128 × 128). Then,
we implemented the Savina version without any data sharing in a “pure”
AM fashion. The results obtained (not reported here for space reasons) show
an improvement of the PPs version of about five times on the Xeon and of
about six times on the Power8. The scalability of the two versions are roughly
the same (∼18 on the Xeon and ∼21 on the Power8), whereas the maximum
speedup of the PPs version is much higher on both platforms. These results
confirm the importance of exploiting the physical shared memory to optimize
the performance metric of Actor-based applications on multi-cores.

Lastly, we consider the blackscholes Parsec benchmark, a real applica-
tion that prices a portfolio of European options using the Black-Scholes partial
differential equations [9]. This application can be parallelized iterating a fixed
number of times a Map pattern [17]. We first implemented a “pure” Actor
version of the Map parallel pattern. Then, we used the Map pattern presented
in Section 3 for producing a second version. In the first version, we used a
feature of the CAF library that allows to share the same input message if it is
used in read-only mode by the receiving Actors. With this feature, a master
Actor sends the input container to a pool of Worker Actors. Then, each Actor
internally creates a new output vector for storing the partial result. The partial
results are then collected by the master Actor, which merges them producing
the final result. This implementation creates two copies of the input vector
at each iteration, where one is created in parallel by the Worker Actors. Al-
though this implementation already uses an optimization of the “pure” AM,
it performs considerably worse than the one based on the Map PP, which in-
ternally makes more extensive use of the shared memory (Figure 8). In the
next subsection, together with other benchmarks, we compare the speedup of
the PP-based blackscholes application against other parallel frameworks.



14 Luca Rinaldi et al.

 0

 5

 10

 15

 20

 25

 30

 1  4  8  12  16  20  24  28  32  36  40  44  48

S
p

e
e

d
u

p

Parsec parallelism degree

Ferret - Xeon

Pthreads
FF

CAF+PP
 0

 5

 10

 15

 20

 25

 30

 1  20  40  60  80  100  120  140  160

S
p

e
e

d
u

p

Parsec parallelism degree

Ferret - Power8

Pthreads
FF

CAF+PP

Fig. 9: Speedup of the ferret benchmark of the Pthreads, FastFlow (FF) and CAF plus
PPs (CAF+PP) implementations on the Xeon and Power8 platforms considering as baseline
the Pthreads version with 1 thread.

4.2 Testing Actors+Parallel Pattern with some Parsec benchmarks

In this section, we study the PPs-based parallelization of the Parsec bench-
marks selected. The performance results obtained are compared with those
of the native Pthreads and FastFlow implementations. The FastFlow
implementation uses the same pattern-based approach of the PPs library, as
described in De Sensi et al. [17].

ferret. This application is based on the Ferret toolkit [29] used for content-
based similarity search on different kinds of data, including images, audio and
video. In the Parsec benchmark, the toolkit is configured to perform simi-
larity search on images. In the Pthreads implementation, the application is
composed by six different stages. The first and last stages are sequential while
each of the other stages is executed by a separate thread pool. Different pools
communicate by using fixed-size queues. The implementation uses a single
Pipeline pattern containing four Farm patterns as stages, each one with the
same number of Worker Actors (implemented with Seq patterns). The first
and last stages of the pipeline are instead Seq patterns reading and writing
from/to the local disk. The same logical nesting of PPs is used in the Fast-
Flow version. Figure 9 shows the speedup of the ferret benchmark on the
two platforms considered. The results obtained by using the PPs library are
comparable to those obtained by both the native Pthreads and FastFlow
implementations.

blackscholes and raytrace. The CAF implementations of blackscholes

and raytrace use the Map pattern described in Section 3. blackscholes

applies the same function to all elements of an array. The computation is
repeated a fixed number of times (100 in our test). raytrace implements a
computation over an input matrix representing, at different time intervals, a
frame of an animated scene. The primary difference between these two data-
parallel computations is that raytrace has a very unbalanced workload both
within the single frame as well as between different frames. Instead, for black-
scholes, the workload is almost evenly distributed among all elements of the
array. Therefore, for blackscholes it is reasonable to use a static scheduling
policy of the array’s partitions while for raytrace a dynamic scheduling policy
of the frame’s partitions has to be used to obtain acceptable speedup.



Improving the performance of Actors on Multi-Cores with Parallel Patterns 15

 0

 5

 10

 15

 20

 25

 30

 1  4  8  12  16  20  24  28  32  36  40  44  48

S
p

e
e

d
u

p

Parsec parallelism degree

Blackscholes - Xeon

Pthreads
FF

CAF+PP
 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  20  40  60  80  100  120  140  160

S
p

e
e

d
u

p

Parsec parallelism degree

Blackscholes - Power8

Pthreads
FF

CAF+PP

Fig. 10: Speedup of the blackscholes benchmark of the Pthreads,FastFlow (FF) and
CAF plus PPs (CAF+PP) implementations on the Xeon and Power8 platforms considering
as baseline the Pthreads version with 1 thread.

 0

 5

 10

 15

 20

 25

 1  4  8  12  16  20  24  28  32  36  40  44  48

S
p
e
e
d
u
p

Parsec parallelism degree

Raytrace - Xeon

Pthreads
FF

CAF+PP

Fig. 11: Speedup of the raytrace bench-
mark of the Pthreads, FastFlow (FF) and
CAF plus PPs (CAF+PP) implementations
on the Xeon platform considering as baseline
the Pthreads version with 1 thread.

 0

 2

 4

 6

 8

 10

 12

 1  4  8  12  16  20  24  28  32  36  40  44  48

S
p
e
e
d
u
p

Parsec parallelism degree

Canneal - Xeon

Pthreads
FF

CAF+PP

Fig. 12: Speedup of the canneal benchmark
of the Pthreads, FastFlow (FF) and CAF
plus PPs (CAF+PP) implementations on
the Xeon platform considering as baseline
the Pthreads version with 1 thread.

Figure 10 shows the speedup of the blackscholes benchmark. The speedup
of the PPs version is close to the other two versions on the Xeon platform. On
the Power8 platform the speedup is aligned with that of the native Pthreads
implementation. After every iteration, the Sched Actor waits for the comple-
tion of all Workers before sending back the final result to the spawning Actor,
which then starts a new iteration on the same array (barrier synchronization).
The barrier is implemented by using standard inter-Actor messages. During
the tests, we found that the barrier synchronization between Actors takes less
time if the entire pattern is spawned as detached (cf. Section 3).

The raytrace benchmark parallelization has been implemented with the
Map pattern. Differently from blackscholes, it uses the dynamic scheduling
policy with a chunk size of 1 element. Figure 11 shows the speedup of the ray-
trace benchmark on the Xeon platform (this benchmark does not compile on
the Power8 platform due to some assembly instructions used in the Parsec
implementation). In this case, the CAF version performs almost identically
to the Pthreads and the FastFlow versions, confirming the low-overhead
introduced by the implementation skeleton of the Map pattern.

canneal. This application minimizes the routing cost of a chip design. The
algorithm applies random swaps between nodes and evaluates the cost of the
new configuration. If the new configuration increases the routing cost, the algo-



16 Luca Rinaldi et al.

rithm performs a rollback step by swapping the elements back. The Pthreads
version follows an unstructured interaction model among threads that execute
atomic instructions on shared data structures. At the end of each iteration,
a barrier is executed and each thread checks the termination condition. The
FastFlow implementation instead, uses a master-worker pattern in which
the master evaluates the termination condition and restarts the Workers if the
termination condition is not met. We implemented the same logical schema
used in the FastFlow version by using a standard CAF Actor connected to
the Map PP. The CAF Actor is the master Actor that checks the termination
condition, whereas the Map pattern is used for the computation as a “software
accelerator” (i.e., the result of the computation is sent back to the master Ac-
tor). The Map pattern uses a static scheduling policy, and the input container
has as many entries as the number of Worker Actors so that each Worker
works on a single element of the container. If the termination condition is met
on the result produced by the Map, the master Actor stops the computation.
Otherwise, the process is repeated.

Figure 12 shows the speedup of the canneal benchmark on the Xeon plat-
form (this benchmark does not compile on the Power8 platform because the
assembler instructions it uses are not available). As for blackscholes, the
Map pattern is spawned as detached. The results obtained are very close to
the ones obtained by the Pthreads and FastFlow versions.

4.3 Summary of Results

To summarize the results, we can observe that the PPs proposed in Section 3
and implemented in the CAF framework introduce low overhead and can be
profitably used to speed-up performance-critical portion of the application
in which the pattern can be used. The shared-memory abstraction, confined
within the skeleton implementation of the patterns, gives a significant perfor-
mance boost to applications if compared with a “pure” AM implementations.
This evaluation confirmed that Actors+Parallel Patterns is a flexible parallel
programming model capable of obtaining performance comparable to state-of-
the-art implementations on multi-core platforms, without renouncing to the
features of the AM.

5 Related Work

In the AM, the parallel execution of messages within a single Actor is not
allowed. Similarly, data cannot be shared between Actors by construction.
These restrictions may lead to scalability issues and to the difficulty of fully
exploiting the features of modern shared-memory platforms.

Two distinct approaches are aiming at overcoming these limitations. The
first one tries to improve the performance of all mechanisms used to execute
Actors efficiently, mainly the Actor scheduling strategies [6, 20, 34, 35]. The
second approach, instead, follows the direction of extending the AM with new



Improving the performance of Actors on Multi-Cores with Parallel Patterns 17

features and constructs [10,19,22,25,27,33]. Our work falls in the second cat-
egory. We added a new parallel abstraction level on top of the AM, providing
the user with a set of PPs suitable to efficiently solve a large class of problems
and having their implementation skeletons optimized for multi-core platforms.

Concerning the first approach, aiming at optimizing the RTS of Actor-
based library, Francesquini et al. [20] designed a NUMA-aware run-time envi-
ronment based on the Erlang virtual machine. They introduced the concept
of hub Actors, i.e. Actors with a longer lifespan that create and communicate
with many short-lived Actors composing the application. In the proposed sys-
tem, short-lived Actors are carefully placed on the same NUMA node of hub
Actors, thus obtaining an average increase in the application performance.
Trider et al. [35] performed a systematic study of the scalability limits of
the Erlang language and its VM, presenting a coherent set of technologies,
developed within the EU FP7 RELEASE project, to improve its scalability
and reliability. Barghi and Karsten [6], proposed an improved version of the
Work-Stealing scheduler for the CAF framework, which takes into account lo-
cality and NUMA awareness for Actors. The new scheduler offers comparable
or better performance than the default CAF scheduler. Torquati et al. [34],
the CAF RTS has been optimized to improve the reactivity of Actors and to
reduce the latency of messages in streaming applications composed by one or
more pipelines.

Concerning the second approach, Scholliers et al. [33] observed that the AM
is too strict, and they proposed PAM (Parallel Actors Monitor), a scheduler
that expresses a coordination strategy for the parallel execution of messages
within a single Actor. Since messages can be processed in parallel within the
same Actor in PAM, the programmer is no longer forced to partition the input
data to exploit parallelism. The authors of PAM proposed an AmbientTalk
implementation of the scheduler, which uses a thread pool inside an Actor.
Our approach promotes a more structured approach to these kinds of parallel
problems, which on the one hand reduces the programmer’s freedom, but on
the other hand, provides suitable abstractions with a precise parallel semantics
that can be customized and combined to solve the problem at hand.

Some authors proposed to use transactional memory to manage concurrent
modifications of the Actor state [22], rather than an ad-hoc internal sched-
uler [33]. Incoming messages are executed in parallel on a thread pool, and
the state modifications are managed as transactions, thus if two modifica-
tions conflict, the state is reverted and the modification executed again in a
different order. To improve performance in situations where there are many
concurrent state modifications, the authors proposed to divide the mailbox
into two queues, one for read-only messages (i.e., messages that do not modify
the Actor’s internal state), and one for the other messages. The two queues
are then scheduled on two configurable thread pools to decrease conflicts in
the transactional memory.

De Koster et al. [27] proposed a global shared state (the Domain abstrac-
tion) that the Actors can access to reduce message and synchronization over-
heads. The authors proposed four different variants of the Domain, namely



18 Luca Rinaldi et al.

Immutable Domain, Isolated Domain, Observable Domain, and Shared Do-
main. Each one enforces different properties and guarantees on the data they
manage with respect to the accesses executed by different Actors. Our ap-
proach is based on PPs abstractions as the way to encapsulate shared states
and to coordinate concurrent accesses according to the parallel semantics of
the patterns.

Skel [10] is a parallel library written in Erlang. It provides the user with a
set of PPs (e.g., pipeline, farm and seq) that can be composed in a functional
way. Each pattern is implemented by using Erlang Actors and can be cus-
tomized by providing a set of functions. The main aim of the authors of Skel
is to provide a skeleton-based library in Erlang to improve programmability
and increase Erlang program performance. Our approach differs because we
leverage PPs to address the restrictions of the AM by encapsulating low-level
optimizations within the patterns.

In our previous work [32], we proposed to extend the AM with a soft-
ware accelerator to decrease the execution time of data-parallel computations.
We proposed an effective way to partitioning CPU resources between the Ac-
tor’s scheduler and the data-parallel accelerator. We provided a preliminary
implementation of the Map pattern that could be executed on the software
accelerator. A similar approach was presented in [25], where the authors ex-
tend the C++ Actor Framework (CAF) to support external HW accelerator
(e.g., GPUs) through OpenCL for speeding up data-parallel computations.
The extension implements an OpenCL manager and a new OpenCL Actor.
The OpenCL manager supports the interaction with OpenCL capable devices
and it can spawn OpenCL Actors.

Finally, for the sake of completeness, several works have been made in the
context of Active Objects to overcome some of the limitations of the AM. An
Active Object (AO) is a pattern of concurrency largely inspired by the AM.
An AO runs in its thread of control. The goal is to decouple the object method
invocation from its execution to simplify object access [28]. Henrio et al. [23],
proposed the Multi-Active Object model, which extends the Active Object
model, allowing each activity to be multi-threaded. Hains et al. [21], proposed
a new programming model that uses Active Objects to coordinate BSP (Bulk
Synchronous Parallel) computations. Fernandez-Reyes et al. [19] proposed an
extension of the AO model with the ParT abstraction, capable of running
efficient data-parallel computations in a non-blocking fashion with the ability
to execute multiple dependent ParT in parallel and to stop the execution on
those values that are discovered to be irrelevant for the final result.

6 Summary and Future Directions

In this paper, we discussed the performance limitation of using the “pure” AM
in the context of high computational demanding applications on multi-cores.
As reported in many research works, and as confirmed by our experimental
results, the Actor isolation property may substantially impair the overall per-
formance of Actor-based applications on multi-cores.To overcome this prob-



Improving the performance of Actors on Multi-Cores with Parallel Patterns 19

lem, we proposed to enrich the AM with a set of well-known Parallel Patterns
(PPs) capturing recurrent parallel problems. Such patterns are provided to the
programmer as a library of highly-optimized skeletons implemented in CAF.
PPs transparently encapsulate the use of the shared-memory and all low-level
optimizations needed to maximize their performance. At the same time, they
offer a clean Actor-like interface that perfectly integrates with the AM without
breaking Actor isolation. The resulting programming model combines the best
of the two worlds, offering at the user a versatile, safe, and efficient program-
ming environment, also on multi-core platforms.

As future work, we want to extend the PP library with more patterns and
test the model on heterogeneous distributed systems.

References

1. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press (1986)

2. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation.
Journal of Functional Programming 7(1), 1–72 (1997)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and
efficient streaming on multi-core. In: S. Pllana, F. Xhafa (eds.) Programming Multi-
core and Many-core Computing Systems, Parallel and Distributed Computing, chap. 13.
Wiley (2017). DOI 10.1002/9781119332015.ch13

4. Allen, J.: Effective Akka: Patterns and Best Practices. ” O’Reilly Media, Inc.” (2013)
5. Armstrong, J.: The development of Erlang. SIGPLAN Not. 32(8), 196–203 (1997).

DOI 10.1145/258949.258967
6. Barghi, S., Karsten, M.: Work-stealing, locality-aware actor scheduling. In: 2018 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pp. 484–494
(2018). DOI 10.1109/IPDPS.2018.00058

7. Bernstein, P., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: Dis-
tributed virtual actors for programmability and scalability. Microsoft Re-
search (2014). Available: https://www.microsoft.com/en-us/research/publication/
orleans-distributed-virtual-actors-for-programmability-and-scalability/

8. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Characterization
and architectural implications. In: 17th Inter. Conf. on Parallel Architectures and Com-
pilation Techniques, PACT ’08, pp. 72–81. ACM (2008). DOI 10.1145/1454115.1454128

9. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of
Political Economy 81(3), 637–54 (1973)

10. Bozó, I., Fordós, V., Horvath, Z., Tóth, M., Horpácsi, D., Kozsik, T., Köszegi, J., Bar-
well, A., Brown, C., Hammond, K.: Discovering parallel pattern candidates in Erlang.
In: Proceedings of the 13th ACM SIGPLAN Workshop on Erlang, Erlang ’14, pp. 13–23.
ACM (2014). DOI 10.1145/2633448.2633453

11. Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++: De-
sign Patterns for Decomposition and Coordination on Multicore Architectures, 1st edn.
Microsoft Press (2011)

12. Charousset, D., Hiesgen, R., Schmidt, T.C.: Revisiting actor programming in c++.
Computer Languages, Systems & Structures 45(Supplement C), 105 – 131 (2016)

13. Charousset, D., Schmidt, T.C., Hiesgen, R., Wählisch, M.: Native Actors – A Scalable
Software Platform for Distributed, Heterogeneous Environments. In: Proc. of the 4rd
ACM SIGPLAN Conference on Systems, Programming, and Applications (SPLASH
’13), Workshop AGERE!, pp. 87–96. ACM (2013)

14. Chasapis, D., Casas, M., Moretó, M., Vidal, R., Ayguadé, E., Labarta, J., Valero, M.:
PARSECSs: Evaluating the impact of task parallelism in the parsec benchmark suite.
ACM Trans. Archit. Code Optim. 12(4), 41:1–41:22 (2015). DOI 10.1145/2829952

https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/


20 Luca Rinaldi et al.

15. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel computing 30(3), 389–406 (2004)

16. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy of actor
models and their key properties. In: Proceedings of the 6th International Workshop on
Programming Based on Actors, Agents, and Decentralized Control - AGERE 2016, pp.
31–40. ACM Press (2016). DOI 10.1145/3001886.3001890

17. De Sensi, D., De Matteis, T., Torquati, M., Mencagli, G., Danelutto, M.: Bringing
parallel patterns out of the corner: The p3arsec benchmark suite. ACM Trans. Archit.
Code Optim. 14(4), 33:1–33:26 (2017). DOI 10.1145/3132710

18. Ernstsson, A., Li, L., Kessler, C.: Skepu 2: Flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. International Journal of Parallel Programming
46(1), 62–80 (2018). DOI 10.1007/s10766-017-0490-5

19. Fernandez-Reyes, K., Clarke, D., McCain, D.S.: Part: An asynchronous parallel abstrac-
tion for speculative pipeline computations. In: Coordination Models and Languages, pp.
101–120. Springer International Publishing (2016)

20. Francesquini, E., Goldman, A., Méhaut, J.F.: Improving the performance of actor model
runtime environments on multicore and manycore platforms. In: Proceedings of the
2013 Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2013, pp. 109–114. ACM (2013). DOI 10.1145/2541329.2541342

21. Hains, G., Henrio, L., Leca, P., Suijlen, W.: Active objects for coordinating bsp com-
putations (short paper). In: G. Di Marzo Serugendo, M. Loreti (eds.) Coordination
Models and Languages, pp. 220–230. Springer International Publishing (2018)

22. Hayduk, Y., Sobe, A., Felber, P.: Dynamic message processing and transactional mem-
ory in the actor model. In: IFIP International Conference on Distributed Applications
and Interoperable Systems, pp. 94–107. Springer (2015)

23. Henrio, L., Huet, F., István, Z.: Multi-threaded active objects. In: R. De Nicola, C. Julien
(eds.) Coordination Models and Languages, pp. 90–104. Springer Berlin Heidelberg
(2013)

24. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial in-
telligence. In: Proc. of the 3rd Int. Joint Conference on Artificial Intelligence, IJCAI’73,
pp. 235–245. Morgan Kaufmann Publishers Inc. (1973)

25. Hiesgen, R., Charousset, D., Schmidt, T.C.: OpenCL Actors – Adding Data Parallelism
to Actor-Based Programming with CAF, pp. 59–93. Springer International Publishing
(2018). DOI 10.1007/978-3-030-00302-9\ 3

26. Imam, S.M., Sarkar, V.: Savina - an actor benchmark suite: Enabling empirical evalua-
tion of actor libraries. In: Proceedings of the 4th International Workshop on Program-
ming based on Actors Agents & Decentralized Control - AGERE! ’14, pp. 67–80. ACM
Press (2014). DOI 10.1145/2687357.2687368

27. Koster, J.D., Marr, S., Cutsem, T.V., D’Hondt, T.: Domains: Sharing state in the
communicating event-loop actor model. Computer Languages, Systems & Structures
45, 132 – 160 (2016). DOI https://doi.org/10.1016/j.cl.2016.01.003

28. Lavender, R.G., Schmidt, D.C.: Pattern languages of program design 2. chap. Ac-
tive Object: An Object Behavioral Pattern for Concurrent Programming, pp. 483–499.
Addison-Wesley Longman Publishing Co., Inc. (1996)

29. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Ferret: A toolkit for content-
based similarity search of feature-rich data. SIGOPS Oper. Syst. Rev. 40(4), 317–330
(2006)

30. Mattson, T., Sanders, B., Massingill, B.: Patterns for parallel programming, first edn.
Addison-Wesley Professional (2004)

31. Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. ” O’Reilly Media, Inc.” (2007)

32. Rinaldi, L., Torquati, M., Mencagli, G., Danelutto, M., Menga, T.: Accelerating Actor-
based applications with parallel patterns. In: 27th Euromicro PDP Conference, Pavia,
Italy, 2019, pp. 140–147 (2019). DOI 10.1109/EMPDP.2019.8671602

33. Scholliers, C., Tanter, É., De Meuter, W.: Parallel actor monitors: Disentangling task-
level parallelism from data partitioning in the actor model. Science of Computer Pro-
gramming 80, 52–64 (2014). DOI 10.1016/j.scico.2013.03.011



Improving the performance of Actors on Multi-Cores with Parallel Patterns 21

34. Torquati, M., Menga, T., De Matteis, T., De Sensi, D., Mencagli, G.: Reducing mes-
sage latency and CPU utilization in the CAF actor framework. In: 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing, PDP
2018, Cambridge, United Kingdom, March 21-23, 2018, pp. 145–153 (2018). DOI
10.1109/PDP2018.2018.00028

35. Trinder, P., Chechina, N., Papaspyrou, N., Sagonas, K., Thompson, S., Adams, S.,
Aronis, S., Baker, R., Bihari, E., Boudeville, O., Cesarini, F., Stefano, M.D., Eriksson,
S., fördős, V., Ghaffari, A., Giantsios, A., Green, R., Hoch, C., Klaftenegger, D., Li,
H., Lundin, K., Mackenzie, K., Roukounaki, K., Tsiouris, Y., Winblad, K.: Scaling
reliably: Improving the scalability of the Erlang distributed actor platform. ACM Trans.
Program. Lang. Syst. 39(4), 17:1–17:46 (2017). DOI 10.1145/3107937


	Introduction
	Background
	Designing Parallel Patterns as Actors
	Evaluation
	Related Work
	Summary and Future Directions

