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Abstract. Power consumption of IT infrastructure is a major concern
for data centre operators. Since data centres power supply is usually
dimensioned for an average-case scenario, uncorrelated and simultane-
ous power spikes in multiple servers could lead to catastrophic effects
such as power outages. To avoid such situations, power capping solu-
tions are usually put in place by data centre operators, to control power
consumption of individual server and to avoid the datacenter exceeding
safe operational limits. However, most power capping solutions rely on
Dynamic Voltage and Frequency Scaling (DVFS), which is not always
able to guarantee the power cap specified by the user, especially for low
power budget values. In this work, we propose a power-capping algorithm
that uses a combination of DVFS and Thread Packing. We implement
this algorithm in the NORNIR framework and we validate it on some real
applications by comparing it to the Intel RAPL power capping algorithm
and another state of the art power capping algorithm.

Keywords: Power Capping - RAPL - Self-Aware Computing - Green
Computing

1 Introduction

Power consumption management is becoming a critical factor in designing ap-
plications and computing systems. In data centres, the energy cost is quickly
going to overcome the cost of the physical system itself [4]. Moreover, besides
economic considerations, power consumption has a considerable impact on the
environment, since during 2010 the C'O2 emissions of U.S. data centres were on
par with those of an entire country like Argentina or Netherlands [19].
Traditionally, to avoid possible electric surges, data centre operators have
over-provisioned data centre power, considering a worst-case power consump-
tion [15]. Albeit this ensures reliability with high confidence, it is wasteful
in terms of power infrastructure utilization. To improve efficiency, researchers
are investigating the possibility to over-subscribe data centre power [15, 16, 20].
Namely, the data centre power demand could intentionally be allowed to exceed
the power supply, under the assumption that correlated spikes in servers’ power
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consumption are infrequent. However, this exposes data centers to the risk of
power outages, caused by unpredictable power spikes (e.g. due to an increase in
the power consumption of more servers at the same time). Such an event would
have catastrophic effects since it would lead to degradation in the final user ex-
perience or service outages. For these reasons, to achieve power safety and to
avoid having under-utilized power provisioning, power capping techniques have
been recently proposed [11,22,21,18]. These techniques monitor the data centre
power consumption and, when it gets close to the available capacity, request
the servers to reduce their power consumption, usually by applying Dynamic
Voltage and Frequency Scaling (DVFS) [6].

One of the most commonly used techniques is Intel RAPL power capping [23].
However, it can only operate in a predefined range according to the processor
specifications, and any value outside this range will be ignored. However, by
extending the range of values enforceable by a power capping mechanism it
would be possible to better distribute the power budget on the available servers,
for example by setting low budgets for servers running non-critical applications
and by letting the computing nodes running important applications run without
any power cap. In this work, we address this issue by proposing a power capping
algorithm which combines DVFS and Thread Packing. Thread packing [8] is a
technique which forces N threads to run on a number of cores C, with C < N,
thus allowing the operating system to put some cores in sleep states. Moreover,
we provide a working implementation of this algorithm by adding it to the
NORNIR framework, which would allow us to apply power capping to a specific
application without any need to change the application code.

The main contributions of this work may be summarized as follows:

— We propose a power capping algorithm which, given a power cap, can find the
most performing configuration in terms of clock frequency and the number
of cores used.

— We implement this algorithm inside the NORNIR framework.

— We validate the algorithm by comparing it against Intel RAPL power cap-
ping [11] and another state of the art algorithm [13], showing improvement
in the performance of the selected configuration up to 2X.

The rest of the paper is organized as follows. Section 2 describes some re-
lated works, highlighting the strengths and weaknesses of each of them. Then,
in Section 3 we provide some background by describing the NORNIR framework.
The design and implementation of the algorithm are described in Section 4 and
it is then evaluated in Section 5. Eventually, Section 6 concludes and outlines
some possible future directions for this work.

2 Related Work

Several works proposed different power capping algorithms and techniques. The
most commonly used solution is Intel RAPL power capping [11], which is pro-
vided as a tool on Intel architectures. The tool dynamically scales the clock
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frequency and the voltage of the cores in order to enforce the power budget re-
quired by the user. However, as shown in the motivating example in Section 1,
by only using DVFS it is not possible to decrease the power consumption below
a certain threshold.

However, some works propose solutions using DVFS in conjunction with other
techniques. For example, Conoci et al. [9] propose a power capping algorithm
that uses DVFS and concurrency throttling (i.e. dynamically changing the num-
ber of threads at runtime). However, threads can be dynamically removed and
added only for applications based on the thread pool model, thus limiting the
applicability of the approach. On the contrary, our approach does not assume
any particular application structure, since it relies on thread packing.

Other works also use thread packing [8]. However, differently from our ap-
proach, they require a training phase to be performed offline, before running the
application. During the training phase, data about different applications will be
collected to build a model to predict the performance and power consumption of
the application in different configurations. Our algorithm relies on the opposite
approach, by not requiring any training and by taking decisions only based on
what is observed during application execution.

Some existing solutions do not require an offline training phase and use DVFS
together with thread packing or concurrency throttling [13,2], similarly to what
is done in this paper. However, such solutions either require to modify the source
code of the application or are tied to some specific programming model such as
OpenMP. On the contrary, our approach does not make any assumption on the
application and does not require any modification to existing applications.

Eventually, some works propose techniques to coordinate power capping at
the datacenter level [22]. However, since they rely on Intel RAPL for power
capping, such solutions are still affected by the problem outlined in Section 1.

3 The Nornir Framework

NORNIR [12] is a customizable framework which can be used to add power-aware
capabilities to applications. On one side, NORNIR can be used to enforce power
consumption and performance requirements to applications. For example, users
could ask NORNIR to dynamically change the number of resources used by a
video processing application so that the application will consume no more than
60 Watts but, at the same time, it will process at least 20 frames per second. On
the other side, it can be customized by researchers by adding new algorithms for
selecting the proper amount of resources given the user constraints.

To monitor the application and to apply some decisions (e.g. dynamically
remove threads from the application), NORNIR needs to be interfaced with the
application. This can be done in different ways:

1. The user could implement a parallel application from scratch, by using the
programming API provided by NORNIR

2. NORNIR can natively interact with some parallel runtimes (OpenMP and
FastFlow [1] are currently supported). If the application uses one of these
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runtimes, NORNIR can interact with the application with minimal modifica-
tion to the application code.

3. Otherwise (e.g. for applications using pthreads), the user could insert a cou-
ple of instrumentation calls in the application. These calls will monitor the
performance of the application and will send these data to NORNIR, which
will use it to decide how many resources to allocate to the application.

4. Eventually, if the user can not modify the application, NORNIR can still
monitor it by relying on hardware performance counters (e.g. number of
instructions executed per time unit). Despite this solution have been pre-
viously described [12] (denoted as black-box), its efficacy has never been
evaluated. It is worth mentioning that in this case, because NORNIR doesn’t
explicitly interact with the application, performance requirements can only
be expressed in terms of instructions executed per time unit.

Nornir Programming Supported Instrumented Black-Box
Framework Frameworks Applications Applications

Nornir

Knobs Sensors

e — ————
Clock Frequency Thread mapping Hyperthreadin i Power Performance
Number of Cores requency Thre pping Hyp e ling Other Mechanisms Consumption Counien TETpelu'ule
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Fig. 1: Nornir architecture.

NORNIR architecture is depicted in Figure 1. Since in this work we would
like to provide a solution which could be better than Intel RAPL power capping
while not being worst in terms of user effort, we will focus on the case where the
user can not modify the application, forcing NORNIR to monitor the application
only through hardware performance counters.

NORNIR works by following a classical Monitor-Analyze- Plan- Ezecute (MAPE)
autonomic loop where, at fixed timesteps, it monitors the current performance
and power consumption of the application in its current configuration. Based
on this knowledge it decides if and how to change the number of resources allo-
cated to the application, by using DVFS to scale the clock frequency and thread
packing to change the number of used cores. In the Monitor phase, instructions
per second and power consumption are collected by using MAMMUT library [14].
Among others, this library is also used by NORNIR in the Ezecute phase to apply
DVFS and thread packing.

To set a specific power cap, it is sufficient to use an executable file provided
by NORNIR, which takes as arguments the process identifier (pid) of the process
we would like to control and the value of the power cap we would like to set. Note
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that at the moment it is only possible to control one application at a time. In the
future, we will extend this approach to control multiple concurrent applications.

4 Algorithm Design

At each timestep, when NORNIR executes the Analyze and Plan phases, our
algorithm is invoked. Based on the information gathered in the Monitor phase,
we must decide which frequency f and how many cores n we would like our
application to use. Since both f and n have an impact on both the performance
and the power consumption, our algorithm must estimate how performance and
power consumption change when f and n are increased or decreased.
Concerning the performance modeling, since we are monitoring the appli-
cation by using hardware performance counters, performance in our case are
represented by the number of instructions executed per time unit. We denote
with I(n, f) the number of instruction executed for a given number of cores
and clock frequency, with 7 the number of cores currently used and with f the
clock frequency currently used. Taking inspiration from the performance model
presented in [10], we assume I(n, f) to scale linearly with both n and f, i.e.

I, )= 16m7)- 2 1)
n-f

Accordingly, given the current measurement I(7, f) we can estimate the per-
formance of any other configuration by assuming that the performance will
change proportionally to the changes in the number of used cores n and the
clock frequency f. It is worth noting that we are assuming that the application
linearly scales, i.e. by doubling the number of cores we would double the in-
structions executed per time unit. Of course, this is not always the case and this
approximation is more severe as larger is the distance between the current con-
figuration and the predicted one. However, as we will see in Section 5, this is not
an issue in practice since, even if the algorithm selects a wrong configuration, an-
other decision will be taken in the following time step. As a consequence, after a
small number of steps, the algorithm will get closer to the correct configuration.
Concerning the power consumption P(n, f), it is composed by a static quan-
tity (which does not depend on n and f) and a dynamic quantity [7,3,17]*. Since
the dynamic power is also dependent on the supply voltage v, we must include

it into our equation, i.e.:

P(nafvv):Pstatic+den(naf7v):Pstatic+a'c'n'v2'f (2)

C and « represent the capacitance of the circuit and the activity factor (i.e.
the fraction of the gates which are active, on average). However, the voltage v

! Actually, static power could change when changing the frequency f. However, this
is a common approximation and, as we will see in Section 5, it does not alter the
accuracy of our algorithm.
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usually depends on the frequency f and the number of cores n. Accordingly, we
can rewrite the equation as:

P(naf):Retatic+den:Pstatic+a'c'n'v(naf)2'f (3)

where V (n, f) is a function which returns the voltage associated to a specific
n and f. This function, in tabular form, is computed and stored by NORNIR
when it is first installed on the system by using Mammut [14]. On our system,
Mammut computes the voltage by accessing the PERF_STATUS [47 :32] MSR reg-
ister. Pgiqtic is constant, and it is computed and stored by NORNIR when it is
installed on the system, by measuring the average idle power consumption on
a one minute interval. Accordingly, we only need to estimate Piynamic. Because
n, f and V(n, f) are known for all the configurations, we only need to estimate
«a - C. This can be done starting from Equation 3 by considering the power
consumption in the current configuration:

P, f) — Pstasi
o ¢ = E0S) = Ptotie (4)
Because all the needed quantities are known, we can estimate the power
consumption in any configuration as:

n- V(’l’L, f)Q : f
It is worth noting that this approach does not require any application char-
acterization. NORNIR will monitor the application throughout its execution, se-

lecting the optimal number of cores and frequency according to the predictions
made by the performance and the power consumption models.

P(TL, f) = Pstatic + (P(ﬁv ?) - Pstatic) ° (5)

5 Experimental Evaluation

We validate our algorithm by comparing it against two algorithms: i) Intel RAPL
power capping, which applies DVFS and clock modulation to control the power
consumption of the system; ii) Online Learning [13], which uses an online learn-
ing approach where a part of the application execution is used to collect data
about different configuration and to build a prediction model, which will be
used to select the optimal configuration. This algorithm is one of those already
provided by NORNIR.

We selected the blackscholes, bodytrack and streamcluster benchmarks from
the PARSEC benchmark suite [5] . All the experiments have been executed on
a Dual-socket NUMA machine with two Intel Xeon E5-2695 Ivy Bridge CPUs
running at 2.40GHz featuring 24 hyper-threaded cores (12 per socket). Each
hyper-threaded core has 32KB private L1, 256 KB private L2 and 30MB of L3
shared with the cores on the same socket. The machine has 64GB of DDR3 RAM
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and a Thermal Design Power (TDP) of 230 Watts. We did not use the hyper-
threading, and the applications used at most 24 cores in our experiments. Due
to hardware limitations, on this machine, it is not possible to set the frequency
of each core individually. However, this is not a problem since our prediction
models assume that the frequency of all the cores will be the same. The software
environment consists of Linux 3.14.49 x86_64 shipped with CentOS 7.1 and gcc
version 4.8.5. When using Intel RAPL power capping, we split the power budget
evenly among the two packages (CPU). For example, when setting a 100 Watts
power cap, we will set a 50 Watts power cap on each CPU. We express the
power budget as a percentage of the TDP. For example, a power budget of 10%
represents a 23 Watts power budget. We consider up to a 50% power budget
because we did not observe any significant difference above that level. For all
the approaches, we enforce the power cap on a window of one second. The static
power was ~ 37 Watts on the machine we used for our experiments. All the power
consumption data presented include static power. According to the specifications
of this processor, power capping values cannot be lower than ~ 64 Watts for each
package. However, we experimentally found that the actual limit which can be
reached by Intel RAPL power capping is around ~ 30 Watts for each package.

We evaluated each algorithm over each application for different power bud-
gets, by analyzing the following two metrics:

Violation Let us suppose that the application runs for s seconds, that the
power cap required by the user was ¢ Watts and that the measured power
consumption at a given time ¢ is P(t). We also define with V' the set of
samples ¢ such that P(t) > ¢, i.e. the set of samples where the power cap
was violated. Then, this metric is defined as:

2rev(P(t) —¢)

S

This metric includes both the number and the amplitude of the power budget
violations and represents the average violation of the power cap. A lower
value implies a better algorithm.

Execution Time The performance of the application, expressed as the execu-
tion time normalized to the execution time when using Intel RAPL power
capping. A lower value implies a better algorithm. This metric will be shown
only for experiments where RAPL correctly enforce the power cap. Indeed,
when the power budget is exceeded performance would be higher than the
performance achieved by solutions which properly enforce the power cap,
and the comparison in such cases would not be fair.

For each of the following plots we show on the x-axis the maximum power
budget we set for the application and on the y-axis the value for the metric. On
the x-axis label we have on the three lines:

1. The power budget expressed as a percentage of the TDP.
2. The average number of cores set by our algorithm.
3. The clock frequency set by our algorithm.
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Fig. 2: Analysis of different algorithms on the blackscholes application.

The black vertical bar on the top of the histograms represents the 95% confidence
interval from the mean.

We report in Figure 2 the analysis for the blackscholes application. By ana-
lyzing the plots, we see how RAPL fails in enforcing power caps with a budget
lower or equal than 20%. Whereas no algorithms can reach the 10% power bud-
get, our algorithm correctly enforces the 20% power budget, because it reduces
the number of cores allocated to the application to one, while with RAPL all
the available cores are used. By observing the performance results, our algo-
rithm is always characterized by the best performance, except for the 10% and
20% cases, because RAPL and Online Learning violate more often the avail-
able power budget, using more resources and obtaining higher performance. For
the 30% case our algorithm outperforms the online learning and RAPL algo-
rithms, finding configurations that, while still satisfying the required power cap,
are characterized by a higher performance (up to 2x). The reason why our al-
gorithm performs better than the online learning one is that the latter needs
more time to find a suitable configuration, due to the training phase it needs
to perform to gather data about different configurations. Since during the train-
ing phase some low-performing configurations may be visited, this increases the
execution time. Moreover, the algorithm needs to be trained again for different
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Fig. 3: Analysis of different algorithms on the bodytrack application.

application phases, introducing additional overhead. For power budgets higher
than 30% all the algorithm can properly enforce the power cap.

Similar results have been obtained for bodytrack, as shown in Figure 3. In
this case, the performance gap between our algorithm and the online learning
one are even more evident, with a speedup higher than ~ 2X when the power
cap is set to 30%. Moreover, our solution can find configurations which are more
performing than those selected by RAPL, even for higher power budgets (40%
and 50%). This happens for the same reason why RAPL fails in enforcing low
power budgets, i.e. since it only uses DVFS, the set of choices it can make are
much more limited compared to our algorithm.

Eventually, Figure 4 reports the results for the streamcluster application.
Even in this case, the results reflect what we observed for the other two applica-
tions, with our algorithm being able to enforce 20% power caps, and providing

more than ~ 2X performance improvement on higher power caps compared to
RAPL.
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Fig. 4: Analysis of different algorithms on the streamcluster application.

6 Conclusions and Future Work

In this work, we presented a power capping algorithm which used DVFS and
thread packing to extend the range of reachable power caps compared to RAPL.
We implemented this algorithm in the NORNIR framework, and we used its ability
to control applications to test our algorithm. We then compared our algorithm
with RAPL and with another state of the art approach, showing that it can
satisfy the required power cap even when RAPL is not able to do so. Moreover,
even when both algorithms correctly enforce the power budget required, there
are cases where our algorithm can find configurations characterized by better
performance, in some cases more than ~ 2.X more performing than those found
by the other two algorithms.

In the future, we would like to extend this work for controlling multiple
concurrent applications, possibly by having different power budgets for different
applications according to their importance/priority. Moreover, we would like to
extend the algorithm to also consider other control mechanisms such as Dynamic
Clock Modulation (DCM) or DVFS for memory and uncore components.
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