
Noname manuscript No.
(will be inserted by the editor)

Simplifying and Implementing Service Level
Objectives for Stream Parallelism

Dalvan Griebler · Adriano Vogel ·
Daniele De Sensi · Marco Danelutto ·
Luiz G. Fernandes

Received: date / Accepted: date

Abstract An increasing attention has been given to provide Service Level
Objectives (SLOs) in stream processing applications due to the performance
and energy requirements, and because of the need to impose limits in terms
of resource usage while improving the system utilization. Since the current
and next generation computing systems are intrinsically offering parallel ar-
chitectures, the software has to naturally exploit the architecture parallelism.
Implement and meet SLOs on existing applications is not a trivial task for
application programmers, since the software development process, besides the
parallelism exploitation, requires the implementation of autonomic algorithms
or strategies. This is a system-oriented programming approach and requires
the management of multiple knobs and sensors (e.g., the number of threads to
use, the clock frequency of the cores, etc.) so that the system can self-adapt
at run-time. In this work, we introduce a new and simpler way to define SLO
in the application’s source code, by abstracting from the programmer all the
details relative to self-adaptive system implementation. The application pro-
grammer specifies which parts of the code to parallelize and the related SLOs
that should be enforced. To reach this goal, source-to-source code transfor-
mation rules are implemented in our compiler, which automatically generates
self-adaptive strategies to enforce, at run-time, the user-expressed objectives.
The experiments highlighted promising results with simpler, effective, and ef-
ficient SLO implementations for real-world applications.

Keywords Parallel Programming · Stream Processing · Self-Adaptive ·
Domain-Specific Language · Power-aware Computing

Dalvan Griebler, Adriano Vogel, Luiz G. Fernandes
School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Daniele De Sensi and Marco Danelutto
Department of Computer Science, University of Pisa (UNIPI)

Dalvan Griebler
Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty
(SETREM) E-mail: dalvan.griebler@acad.pucrs.br

2 Dalvan Griebler et al.

1 Introduction

Service-oriented approach influenced new system models like the cloud com-
puting one [7]. Since a service can be represented by software components,
functions, or a sequence of commands, this can help to improve the expres-
siveness and methodology of parallel software design. The service behavior can
also be evaluated from different perspectives through the concept of Quality-of-
Service (QoS), which identifies non-functional attributes. Performance metrics
like throughput are used to measure QoS or to establish requirements between
providers and clients. The programmer may know about the requirements of
the components and how to improve the QoS of them. Consequently, the pro-
grammer can define Service Level Objectives (SLOs) for each one of these
components so that they behave as expected in a Service Level Agreement
(SLA) or in a contract [33].

Since the new and next-generation computing systems are intrinsically of-
fering parallel architectures, the software has to naturally exploit the archi-
tecture parallelism. Implement and meet SLOs on existing applications is not
a trivial task for application programmers, because the usual software devel-
opment process, besides the parallelism exploitation, also requires the imple-
mentation of autonomic algorithms or strategies. This is a system-oriented
programming approach and requires the management of multiple knobs and
sensors (e.g., the number of threads to use, the clock frequency of the cores,
etc.) simultaneously so that the system self-adapts at run-time.

In stream processing applications, parallelism is typically exploited by us-
ing linear or non-linear pipeline pattern compositions [27]. To this purpose,
parallel programming framework such as StreamIt [35], Intel TBB [30], and
FastFlow [2,1] provide different programming approaches and interfaces
with a reasonable performance scalability for this domain. Although these
frameworks are equipped with high-level pattern implementations to express
the parallelism, they are still closer to expert system programmers rather than
to the application domain programmers. Seeking to provide domain-specific
and suitable abstractions for stream parallelism, SPar [17] was created. It
improves application programmers’ productivity through a C++11 annotation-
based language, which does not require to rewrite/restructure the sequential
source code [17]. Moreover, it is important to highlight that stream processing
applications are usually characterized by unpredictable load fluctuations and
uncertain end of execution (may never end) [4]. However, none of these par-
allel programming alternatives automatically deals with this service-oriented
behavior, since they are not able to guarantee SLOs due to the static resource
assignment (e.g., a fixed amount of threads).

Besides the need for improving performance through the efficient exploita-
tion of the multi-core parallelism, there are also other major concerns such as
power-aware computing and efficient resource usage [16,25]. To address these
needs, the Nornir framework was created, providing runtime support to dy-
namically and automatically control the resources allocated for the application
according to the user needs [12]. However Nornir, like most existing self-

Simplifying and Implementing Service Level Objectives for Stream Parallelism 3

adaptive solutions, only works on parallel applications and requires sequential
code refactoring.

To simplify the specification of SLOs in sequential stream processing ap-
plications, differently from Nornir and state-of-the-art parallel programming
frameworks, we proposed a set of SLO attributes which can be inserted along
with SPar’s stream parallelism annotations in the sequential code. In addi-
tion to that, we introduce a programming methodology where the programmer
specifies which source code regions can be parallelized and the requirements
that should be enforced. We implemented source-to-source code transforma-
tion rules in the SPar compiler to automatically generate the self-adaptive
strategies that enforce the user-expressed objectives at run-time. The proposed
energy-aware SLO attributes were implemented using Nornir’s runtime sup-
port and studied in the previous work [18]. Our approach could also be applied
to other frameworks, for example to the framework designed by the REPARA
project1, which provides a set of C++11 attributes to introduce generic paral-
lelism [11]. Moreover, we implement some SLOs on Nornir and others on top
of FastFlow, to demonstrate that this can be applied to different runtimes,
with a different implementation complexity according to the used abstraction.
The major contributions of this paper are summarized as follows:

– A new set of SLO attributes semantically defined by using standard C++11
and SPar annotations.

– Design and implementation of new self-adaptive strategies using the Fast-
Flow framework.

– The implementation of the new SLOs in the SPar compiler with source-to-
source transformation rules, targeting self-adaptive strategies with Nornir
and FastFlow back-ends.

– An experimental evaluation with real-world applications, comparing our
implementations with some state-of-the-art solutions.

We structured our paper as follows. We first present the related work in
Section 2. The next section (3) describes SPar. Section 4 details the proposed
SLOs for stream parallelism and its implementation. In Section 5, a set of ex-
periments are analyzed and discussed. Finally, Section 6 makes the conclusions
of the paper.

2 Related Work

In the literature, there are different studies targeting power consumption,
throughput, and system utilization objectives. Among them, the approach of
Maggio et al. [25] monitors generic applications and supports the specification
of a target performance (throughput) in the parallel code. It efficiently man-
ages the CPU cores, adapting the amount of resource usage needed. However,
it supposes that the parallel application has already been implemented, and
does not provide any mechanism to introduce SLO in sequential programs.

1 http://repara-project.eu/

4 Dalvan Griebler et al.

Some existing algorithms do not explicitly model the power consumption of
applications, thus only providing the possibility to specify performance SLOs
[14,24]. In some cases, it is not even possible to enforce a specific perfor-
mance requirement, but only to run the application in the most efficient [32]
or the most performing configuration [29,10,34]. Other works provide SLO on
power consumption and/or application performance by acting on mechanisms
different from those considered in this work, such as caches [37] or network
interfaces [36]. Another alternative approach to the presented problem is to
dynamically change the accuracy of the results computed by the application
according to the user SLOs. This technique is known as approximate com-
puting [22,38,5] and can be used to trade an increase on performance (or a
decrease on power consumption) for a decrease on the quality of the results
computed by the application. However, these approaches are usually focused
on algorithms and techniques to provide SLOs rather than on programming
abstractions to express SLOs, as we do in this work.

Concerning stream parallel processing for real-time data analytic, Floratou
et al. [16] introduced the notion of self-regulation in Twitter’s Heron frame-
work, called Dhalion. The user defines a target throughput as an SLO parame-
ter for Dhalion. The self-regulator engine handles the number of processes and
number of instances in a cloud infrastructure to provide the specified through-
put. In the experiments, the results revealed that the system can dynamically
adapt resources and automatically reconfigure to meet SLOs. We differently
proposed six target SLOs to be expressed in sequential source codes.

Some works focus on high-level abstractions for energy saving on data
parallelism [3,31], by providing compiler directives for expressing energy con-
sumption and performance objectives in OpenMP. While Shafik et al. [31] can
minimize energy consumption on both sequential and parallel applications,
they do not provide any means to explicitly control the performance of the
application. On the other hand, in Alessi et al. [3], OpenMPE is proposed
adding a new construct and two clauses (objectives) for OpenMP. Their so-
lution was implemented using a source-to-source compiler, which recognizes
the new directives and controls the number of threads used by OpenMP and
applies DVFS to satisfy the SLOs expressed by the user. This is probably
the closest work to the approach we are proposing in this work. The main
difference is that, while Alessi et al. [3] target batch applications (i.e. applica-
tions for which all the input data is already available in memory) implemented
through OpenMP, we provide support for stream processing applications, ex-
posing ad-hoc SLOs for these applications such as system utilization.

Eventually, many existing solutions are either simulated or validated on
post-mortem data (i.e. they are executed after the application finished its exe-
cution, in a what-if analysis fashion) [28,24,34,15]. We believe that, although
a simulation may provide a first approximation about the precision that the
algorithm could have in enforcing the required SLOs, it would not take into
account the run-time overhead of these methods. Differently from these works,
in this paper, we describe and implement a solution which has been validated
by controlling real applications throughout their execution. Finally, stream

Simplifying and Implementing Service Level Objectives for Stream Parallelism 5

processing applications vary during the execution without a pre-defined end,
which makes such approaches unfeasible to apply in our application domain.

3 SPar: High-Level Stream Parallelism

SPar2 is a Domain-Specific Language (DSL) designed to support high-level
stream parallelism for application programmers [17]. With SPar, instead of
rewriting the source code, the programmer introduces C++ annotations (stan-
dard C++-11 [26]) using five attributes, representing the main properties of
stream processing applications. The ToStream attribute identifies the begin-
ning of a stream region, which can be viewed as an assembly line. The Stage

attribute marks a workstation in this assembly line, which can be composed
by as many as necessary. Auxiliary attributes can be used inside the attribute
list of an annotation sentence. The Input and Output attributes are used to
specify the input and output stream items respectively, while the Replicate

attribute is used for replicating stateless stages to increase the degree of par-
allelism.

Listing 1 provides a short code example annotated with SPar attributes.
This example represents a typical use case of stream parallelism, where there is
a sequence of operations to be performed on each stream element. The parallel
activity graph produced by the SPar compiler for Listing 1 is shown in Figure
1. SPar generates the parallel code with the FastFlow library [1], which
implements different parallel patterns [27] for stream processing computations.
The SPar compiler parses the code of Listing 1 and represents the code with an
Abstract Syntax Tree (AST) [17]. Traversing the AST, it performs a semantic
analysis of the attributes to further make the source-to-source transformations.
In this step, the SPar compiler finds the best parallel pattern that meets the
parsed annotation schema. In the case of Listing 1, it will generate parallel
code with three stages, where the middle one is replicated. Moreover, different
compositions with sequential or replicated stages can be achieved. By default,
elements are scheduled from the ToStream stage to the Stage in a round-
robin way. However, it is possible to use an on-demand policy by specifying
the -spar ondemand flag to the SPar compiler. If the data needs to be received
from the last stage in the same order it was produced by the ToStream stage,
the programmer can specify the -spar ordered flag to the SPar compiler.

1 [[spar : :ToStream]] while (1) {
2 frame f = read frame () ;
3 i f (f . empty ()) break ;
4 [[spar : : Stage , spar : : Input (f) , spar : :Output(f) , spar : : Replicate (n)]]
5 for (int i =0; i<f . l ength () ; i++) {
6 f [i] = convert (f [i]) ;
7 }
8 [[spar : : Stage , spar : : Input (f)]] {
9 wr i t e f rame (f) ;

10 }
11 }

2 SPar website: https://gmap.pucrs.br/spar

6 Dalvan Griebler et al.

Listing 1 SPar example: image processing representation with stream parallelim.

Fig. 1 SPar runtime: activity graph and communication queues.

Note that the Replicate attribute applies the replication role over the
Stage in Figure 1. Each replicated stage has its own input and output lock-
free queues. The first stage executes the code inside the ToStream region, which
generates stream items for the subsequent stages. In the default configuration
of SPar runtime, the stages actively try to push or pop stream items from the
queues. If the queue is full or empty, the stage thread executes an active loop,
trying to push or pop until it eventually succeeds. Every time that a given
stage fails in perform push or pop, the stage generates a push or pop lost
event. This may generate an extra overhead for coarse-grain computations.
Therefore, users may set the SPar runtime to behave in a blocking mode
through the spar blocking compiler flag. In this case, the stage thread will not
stay in a loop, it will wait until it can perform push or pop in the shared queue.

4 Service Level Objective for Stream Parallelism

Service Level Objectives (SLOs) are traditionally included in Service Level
Agreements (SLAs), which are contracts to manage the Quality of Service
(QoS) established between customers and providers [33]. An SLA contract
defines the level of service which is acceptable by the user and attainable by
the provider. The SLO is a target value or a range of values for a certain level
of service to be delivered. The level of service is measured by a Service Level
Indicator (SLI). A typical structure of SLO can be written SLI ≤ target or
lower bound ≤ SLI ≤ upper bound [6]. When an SLO is violated, the system
should react to guarantee the quality of service and SLA. Our design goal is
to simplify the usability of SLO in stream processing applications.

Figure 2 depicts our proposed methodology to express SLOs in the applica-
tion source code. The first step in the developing process is to code the stream

Simplifying and Implementing Service Level Objectives for Stream Parallelism 7

processing application (not needed for legacy applications). After, the pro-
grammer inserts the SPar annotations to express the stream parallelism. This
can be done following the recommendations of SPar’s annotation methodol-
ogy [17]. Lastly, the programmer can insert SLO attributes along with SPar’s
annotations in the source code. Therefore, the only requirement is to choose
the SLO metric and its initial target value. No extra details must be provided
by the application programmers, which can spend most of their time in coding
the sequential application. Consequently, in this work, we support the appli-
cation programmers with an opportunity to express stream parallelism with
SPar and define a target QoS through SLO attributes.

Fig. 2 Our methodology to define SLOs for stream parallelism.

The SLO attributes are proposed to be used along with a ToStream anno-
tation, which identifies the beginning of a stream parallelism region. Therefore,
the SLO is applied to this particular region. Listing 2 demonstrates the def-
inition of a power consumption SLO of 60 watts in line. It is worth noting
that besides the slo::Power attribute, no other modification is required with
respect to the original SPar code (Listing 1). While multiple SLOs attributes
could be used together, there are only a few meaningful combinations. Usu-
ally, the user may need to express one SLO on performance and one SLO on
power consumption. Other combinations are possible (e.g. slo::Throughput
and slo::Utilization at the same time), but since they are two different
representations of performance, they could conflict between each other. Ad-
ditionally, adding too many constraints could lead to situations where there
would be no feasible solutions, and it may be complex for the application pro-
grammer to find the right SLO values. Table 1 describes the SLO attributes
proposed in this work. The attributes belong to the slo namespace and accept
one argument, which is a value defining the target SLO.

1 [[spar : :ToStream , s lo : :Power(60)]] while (1) {
2 frame f = read frame () ;
3 i f (f . empty ()) break ;
4 [[spar : : Stage , spar : : Input (f) , spar : :Output(f) , spar : : Replicate (n)]]
5 for (int i =0; i<f . l ength () ; i++) {
6 f [i] = convert (f [i]) ;
7 }
8 [[spar : : Stage , spar : : Input (f)]] {
9 wr i t e f rame (f) ;

10 }
11 }

Listing 2 SPar code example with power consumption SLO.

8 Dalvan Griebler et al.

Name Argument Description
slo::Throughput (min-items) The user can specify the minimum throughput

required in items per second. The respective
environment variable is SLO THROUGHPUT.

slo::Power (max-watts) The user can specify the maximum power con-
sumption in Watts. The respective environ-
ment variable is SLO POWER.

slo::Utilization (min-%) The user can specify the minimum runtime
system utilization required in percentage (from
1 to 100). In our case, it represents the per-
centage of time that the system is active (i.e.
actively processing input elements) over a time
interval. The respective environment variable
is SLO UTILIZATION.

slo::Latency (max-time) The user can specify the maximum latency in
milliseconds. This latency refers to the time
taken for an item passing from a stage to an-
other one. The respective environment variable
is SLO LATENCY.

slo::CPU (max-%) The user can specify the maximum CPU uti-
lization in percentage (from 1 to 100%). The
respective environment variable is SLO CPU.

Table 1 SLO attributes for SPar.

4.1 SLO Implementations

SLO attributes in SPar were initially proposed in our previous work [18]. In
this paper, we extend that work by providing new self-adaptive strategies and
SLO attributes (slo::CPU, slo::Latency). Moreover, we add a new algorithm
for enforcing the slo::Throughput SLO when it is not combined with power
consumption SLO. The compiler will decide which strategy to generate when
performing the source-to-source code transformations.

We first explain the self-adaptive strategies to meet the so-called energy-
aware SLOs, which rely on the Nornir runtime support [12]. Nornir moni-
tors the application throughout its entire execution, dynamically changing the
number of resources used by the application to satisfy the requirements ex-
pressed by the user. For example, Nornir may decide to reduce the number
of replicated stages of the application to decrease its power consumption, or to
increase the clock frequency of the cores to increase the application through-
put.

Moreover, Nornir can rely on different algorithms to decide how many
resources to add/remove, either based on machine learning techniques [13] or
on heuristics. When machine learning techniques are used, when the applica-
tion starts, Nornir performs a lightweight training phase by testing different
configurations and collecting application data/performance indicators. The re-
sults collected are used to build prediction models which are used to find the
optimal configuration according to the objectives specified by the user. If no
feasible solution is found, Nornir selects the resources configuration charac-

Simplifying and Implementing Service Level Objectives for Stream Parallelism 9

terized by performance and power consumption as close as possible to the user
requirements.

Besides providing the possibility to control existing parallel applications
(by inserting instrumentation calls in the existing code), Nornir can also be
used as a programming framework (by relying on the FastFlow framework)
for implementing stream-parallel applications with embedded self-adaptation
support. We exploited this second possibility so that SPar can translate se-
quentially annotated code into self-adaptive Nornir parallel code. All details
relative to the use of Nornir are abstracted and made simple along with the
stream parallelism.

In addition to the Nornir’s strategies, we also provide new self-adaptive
strategies for slo::CPU, slo::Latency, and slo::Throughput, which rely on
the SPar runtime system (which is built on top of FastFlow), as illustrated
in Figure 3. Observe that this activity graph is a way of simplification from the
SPar runtime system presented in Figure 1. The strategy follows the MAPE
approach [23] with a feedback closed-loop [21]. The Monitor entity periodically
collects data from the sensors, which can be originated from the application or
from the operating system. These data are used by the Analyze phase, which
interprets the data and extracts relevant statistics.

Fig. 3 SLO implementation by using sef-adaptive strategies.

Afterward, the Plan phase decides if the SPar runtime system must be
adapted to meet the specified SLO. It may be impossible for a strategy to
achieve a given SLO. In such a case, the strategy attempts to reach the SLO
as close as possible. Since stream processing applications may have load fluc-
tuations, unnecessary adaptations should be avoided. In our strategies, we
used a threshold, which is a percentage number that can be tolerated when
the actually monitored metric is higher but close to the target SLO. The de-
fault threshold is 20%, such value was ascertained in [39] as a suitable one for
stream processing applications. Moreover, for the sake of flexibility, users may
customize the threshold value using the SLO THRESHOLD environment variable.
The Execute entity receives the planned action and applies the adaptation by

10 Dalvan Griebler et al.

sending instructions to the SPar runtime system (e.g., tasks/items distribu-
tion) and system knobs (e.g., adapt the number of active replicas). Although
we used this same idea for implementing all new SLOs, each SLO has its spe-
cific self-adaptive strategy (i.e., Analyze and Plan phases), described in the
following section.

4.1.1 slo::Latency

In a previous work [39], we have shown the possibility to manage the latency
by adapting the number of replicas. In this work, we extend the previous study
by implementing it in the SPar compiler as well as providing an SLO option.
During our study, we have seen how the number of replicas affects the latency
of stream items. Additionally, it is a presumably difficult task for program-
mers to manually adapt their software at run-time based on the latency SLO
constraints and on the actual application latency. As a consequence, we aim at
abstracting from programmers the impact of the number of replicas in latency.

We implemented a strategy for the SPar’s runtime that monitors and
manages the latency of stream items by autonomously adjusting the number
of replicas. Considering the representation in Figure 3, the stage A adds a
timestamp to the stream items and the Monitor entity collects from a sensor
that is inside the stage C, where the latency of the stream items is measured.
In the Analyze and Plan phases, the latency information from the Monitor
entity is compared to the SLO, and the Plan phase decides whether to change
or not the number of replicas, based on the tolerated threshold. Eventually,
Execute entity sends instructions to control knobs which changes the number
of active replicas and stage A which distributes the items among the active
replicas from the stage B.

4.1.2 slo::Throughput

Our self-adaptive strategy for the slo::Throughput SLO is based on the num-
ber of items processed per second. The self-adaptive strategy is able to increase
or decrease the throughput with the number of replicas control knob. In this
SLO implementation, accordingly to Figure 3, the Monitor entity periodically
gets the number of items per second from the sensor that we installed in stage
C. For each iteration, the throughput is the result of dividing the number
of processed items by the time that it was taken. Throughput rates are then
stored and accessed by the Analyze phase, which provides useful data statistics
to the Plan phase decide if an adaptation is required.

The Plan phase also has a maximum value for the number of replicas,
which is defined according to the machine’s processing capabilities, gathered
by another sensor that extracts hardware information. The Execution entity
is updated by the Plan phase in order to send information to the control knob,
which increases or decreases the number of replicas depending on the need.
In addition, the Execution entity will inform the stage A (Figure 3), which
implements the task scheduler in the SPar runtime system.

Simplifying and Implementing Service Level Objectives for Stream Parallelism 11

4.1.3 slo::CPU

In the stream processing domain, several SLOs can be relevant for defining per-
formance/efficiency objectives. This occurs because in stream processing ap-
plications, differently from other application domains, the maximum amount
of resources available are not always used nor needed. Continuously use the
total resources capacity tends to reduce the efficiency of the system. Also, us-
ing the maximum resources does not actually mean that a stream processing
application will achieve the best performance [13]. Performance is complex in
the stream processing domain because the workload trend varies in a timely
fashion according to variable input rates, volumes, resources availability, and
different performance objectives. Consequently, we are employing efforts to en-
force performance goals for enabling a customizable execution of stream pro-
cessing applications and their unique characteristics. It is also relevant to allow
programmers to define objectives regarding the consumption of resources.

Therefore, we provide an option to define the CPU utilization (slo::CPU)
SLO when running a given application. Although there are available OS-level
tools for controlling the CPU usage (e.g., CPUlimit [9]), such tools are ar-
guably not flexible. Considering the dynamic nature of stream processing ap-
plications, we expect to adapt the degree of parallelism of the application at
run-time for optimizing the CPU utilization and meet the target SLO. The
implemented self-adaptive strategy follows the schema sketched in Figure 3.

Differently from the previous SLOs, the Monitor entity is periodically get-
ting the current CPU utilization from the sensor, which is reading it from the
operating system. The Analyze phase calls the Monitor entity for providing
CPU utilization statistics to the Plan phase, which aims to decide whether
the number of replicas should be increased or decreased. To avoid oscillation
and instability regarding the replicas reconfiguration, a threshold (described
in Section 4.1) value is used so that the number of replicas is not increased
when the utilization is close to the SLO. Finally, the Execution entity simply
sends this information to the system knob apply an action (increase, decrease,
or stay as it is) as well as to the task scheduler in the stage A to manage
stream item in a correct manner.

4.2 Source-to-Source Transformations

Self-adaptive strategies for each SLO attribute are automatically generated
during the program compilation. We used the SPar compiler to implement the
source-to-source code transformations. This required to add a new compilation
step inside the compiler when performing the transformations from the SPar
annotations to parallel patterns. In this step, the compiler builds the SPar
runtime system with the communications, scheduling, and synchronizations.
Based on the semantics previously specified, we added semantics-checking for
the SLO attributes to ensure correct code generation. All transformations
and analysis are performed in the AST and the parallel code generation is

12 Dalvan Griebler et al.

based on transformation rules [17]. In addition to that, we also implemented
transformation rules to generate the appropriate self-adaptive strategy for each
SLO attribute annotated in the source code.

Figure 4 depicts a high-level representation of the source-to-source trans-
formations targeting the proposed SLOs. This occurs after the semantic anal-
ysis where the Annotation Abstract Syntax Tree (AAST) is built from the
source codes. The AAST also contains an internal representation of the SLO
attributes. The compiler checks if SLO attributes were specified in the specific
spar::ToStream node. In this case, the appropriate rules are applied as shown
in Figure 4.

Fig. 4 Source-to-source transformation for the SLO attributes with SPar.

As presented in Figure 4, we implemented seven transformation rules to
implement the proposed SLO attribute declarations. The first four rules will
generate parallel code with SLO strategies to be executed with the Nornir
framework’s back-end. On the other hand, the last three rules will generate
parallel code with the new SLO strategies (proposed in this paper) for the
FastFlow framework. When using FastFlow’s back-end, the task scheduler
thread also hosts the self-adaptive strategies. On the other hand, in Nornir,
this is managed by an extra thread. Besides, Nornir and FastFlow have dif-
ferent programming interfaces, the parallel patterns are conceptually similar.
Modifications were only necessary to accommodate the proper routine names.
Considering that parallel patterns were implemented in the previous source-
to-source transformation step based on the rules already designed in [17], here
we concentrate on the transformation rules related to the SLOs. It is impor-
tant to note that here we describe only the meaning of the transformations
required, the implementation details are arguably not relevant for presenting
a simplified description. The transformations performed are the following:

1. Implement the following transformation steps for the slo::Utilization

attribute: a) insert the routine which implements the SLO utilization strat-
egy in the Nornir library before the declaration of spar::ToStream; and
b) give as a parameter the attribute argument to be the target SLO for
the strategy routine.

Simplifying and Implementing Service Level Objectives for Stream Parallelism 13

2. Implement the following transformation steps for the slo::Utilization

and slo::Power attributes: a) insert the routine which implements the
SLOs utilization and power strategies in the Nornir library before the
declaration of spar::ToStream; and b) give as parameters the attribute
arguments to be the target SLO for the strategy.

3. Implement the following transformation steps for the slo::Power attribute:
a) insert the routine which implements the SLO power strategy in the
Nornir library before the declaration of spar::ToStream; and b) give as
a parameter the attribute argument to be the target SLO for the strategy
routine.

4. Implement the following transformation steps for the slo::Throughput

and slo::power attributes: a) insert the routine which implements the
SLOs throughput and power in the Nornir library before the declaration
of spar::ToStream; and b) give as parameters the attribute arguments to
be the target SLOs for the strategy routine.

5. Implement the following transformation steps for the slo::Throughput at-
tribute: a) insert the routine which implements the SLO throughput strat-
egy in the FastFlow library before the declaration of spar::ToStream;
and b) give as a parameter the attribute argument to be the target SLO
for the strategy routine.

6. Implement the following transformation steps for the slo::Latency at-
tribute: a) insert the routine which implements the SLO latency strategy
in the FastFlow library before the declaration of spar::ToStream; and
b) give as a parameter the attribute argument to be the target SLO for
the strategy routine.

7. Implement the following transformation steps for the slo::CPU attribute:
a) insert the routine which implements the SLO CPU utilization strategy
in the FastFlow library before the declaration of spar::ToStream; and
b) give as a parameter the attribute argument to be the target SLO for
the strategy routine.

After the SLO transformation rules were applied, the parallel pattern gen-
erated in the AST is built with these rules’ configurations, either for the
Nornir’s self-adaptive manager or for the implemented SPar’s manager. The
SPar’s manager runs a MAPE feedback closed-loop in the generated SPar’s
task scheduler, which is on top of the FastFlow library. We also support the
-spar blocking and -spar ordered compilation flags that are natively sup-
ported in SPar (see Section 3). These compilation flags were used for the
experiments in the next section.

5 Experiments

In this section, we first introduce the considered real-world applications. Then,
we will compare the code generated by SPar with handwritten parallel im-
plementations for these applications, both regarding maximum performance
achieved and productivity. Also, we analyze the self-adaptation capabilities

14 Dalvan Griebler et al.

automatically generated by the SPar compiler under different scenarios. The
experiments have been executed in the following two machines:

– M1 is a machine equipped with 32 GB of RAM memory and two In-
tel(R) Xeon(R) CPU E5-2620 v3 2.40 GHz processors (12 cores-24 hard-
ware threads). The operating system used was Ubuntu Server 64 bits with
the kernel 4.4.0-59-generic. The GCC version used was the 5.4.0 using the
compiler -O3 flag.

– M2 is a dual-socket NUMA machine with two Intel Xeon E5-2695 Ivy
Bridge CPUs running at 2.40GHz featuring 24 cores (12 per socket). The
machine exposes 13 frequency levels, ranging from 1.2GHz to 2.4GHz, at
steps of 0.1GHz. Each core has 2-way hyperthreading, 32KB private L1,
256KB private L2 and 30MB of L3 shared with the cores on the same
socket. The machine has 64GB of DDR3 RAM. We used Linux 3.14.49
x86 64 shipped with CentOS 7.1 and gcc version 4.8.5. For all our exper-
iments we disabled the hyper-threading feature.

5.1 Applications

We briefly describe the real-world application set, input loads, and parallel
implementations. For a detailed description of how Lane Detection and Person
Recognition have been parallelized by using SPar, please refer to [19], while
for Pbzip2 more details can be found in [20].

Lane Detection is a video processing application to detect road lanes, imple-
mented by using the OpenCV library. To introduce parallelism in the sequen-
tial code, it is annotated with SPar by identifying three stages: i) a first stage
which reads the frames; ii) another stage, replicated a number of times, which
processes the frames in parallel; iii) the last stage which displays the frames
in the proper order, with the lanes properly marked. As input workload, we
used a 22MB MPEG-4 video (640x360 pixels).

Person Recognition is an application used to recognize people in a video. The
parallel structure of this application is similar to Lane Detection, with the
middle stage detecting the faces from the crowd and searching in an image
database to classify each face detected. As input workload, we used a 4.8MB
MPEG-4 video (640x360 pixels) along with a training set of 10 face images of
150x150 pixels.

Pbzip application is a parallel implementation of the bzip2 block-sorting files
compressor3. This is a very coarse-grained application characterized by a
stream parallel programming model. The SPar version is annotated with three
stages, where the middle stage is replicated. The input file to compress that we
used for our experiments is a 6,3GB file containing a dump of all the abstract
present on the English Wikipedia on 01/12/2015.

3 http://compression.ca/pbzip2/

http://compression.ca/pbzip2/

Simplifying and Implementing Service Level Objectives for Stream Parallelism 15

5.2 Comparison with Handwritten Implementations

Before evaluating the ability to satisfy SLO specified by the user, we want
to show that from a performance standpoint, the code generated by SPar is
comparable with a handwritten implementation. On the other hand, we would
like to show that our solution reduces the code intrusion required to transform
a sequential application into a parallel one. As reference implementations for
Pbzip we consider the original Pthreads version, while for Lane Detection and
Person Recognition applications we consider the handwritten FastFlow ver-
sions described in [19].

Performance To measure the maximum performance presented in Table 2, we
executed both the reference and our solution generated versions by running
them with 24 threads (to have at most one thread per core). The reported
results refer to machine M2. For our generated version, we did not specify
any SLO, but we still monitor the application by using Nornir. By doing so,
we monitored both the overhead introduced by the interaction with the self-
adaptive support and possible inefficiencies in the generated code. As shown
by the results in Table 2 relative to the energy-aware SLOs, for Lane Detection
and Person Recognition, the overhead is negligible (below 1.5%). For Pbzip2,
there is a slight improvement caused by the use of FastFlow and its opti-
mizations as runtime support in Nornir, while the reference implementation
was based on Pthreads.

Power, Throughput, Utilization Pbzip2
Lane

Detection
Person

Recognition

Performance
Improvement (%)

+0.48% −1.45% −0.92%

LOC Reduction (%) −15.86% −21.51% −24.49%

Table 2 Performance improvement with respect to a handwritten implementation using
FastFlow for the energy-aware SLOs. Negative percentages are the overheads (means
slower) added by the SPar and SLO abstractions. LOC Reduction, negative values mean
that SPar with SLO attributes is more concise than the handwritten one.

Code Intrusion To measure the code intrusion, we rely on Lines of Code (LOC)
metric in Table 2 for energy-aware SLOs. Despite that LOC is not universally
accepted, it is commonly used to compare different implementations of the
same application [40]. For our measurements, we only considered the source
files containing the code relevant for the parallelization. In all the cases, par-
allelizing an application by using SPar with SLOs requires a lower code in-
trusion with respect to FastFlow [17,20]. Since SLOs can be defined by only
inserting the objective through attributes, this practice reduces significantly
the lines of code. The handwritten version increased significantly the lines of
code because implementing a strategy requires implementing all the details
relative to resource management and monitoring.

16 Dalvan Griebler et al.

5.3 SLO Analysis

In this section, we analyze the use of the SLO attributes laying emphasis in
the generated self-adaptive strategies. The main goal is to provide a discussion
regarding the adaptivity and effectiveness of the SLO strategies with a set of
stream processing applications.

The slo::Throughput SLO can be used in any application parallelized
with SPar that has at least one replicated stage. In Figure 5 is shown the result
of Pbzip with a target throughput of 40 tasks per second, representing an SLO
defined by the user. Figure 5 shows the measured throughput compared to SLO
as well as the number of replicas used on each monitoring step. It is possible
to observe that the throughput oscillated significantly during the execution,
which is caused by the application and its input load characteristic. Because
of the throughput oscillations, the self-adaptive strategy needed to change the
number of replicas several times responding to throughput fluctuations and
pursuing performance optimization. In some events, it is possible to note SLO
violations caused by the execution variation. The strategy responded to such
variations, but sometimes it was not fast enough since such short-duration
load spikes occur randomly and their prediction is not possible.

 10

 20

 30

 40

 50

 60

T
h
ro

u
g
h
p
u
t
(t

a
s
k
s
/s

e
c
o
n
d
)

Pbzip2 − Strategy of Adaptive Parallelism for Throughput

Throughput
Target Throughput

 8

 10

 12

 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Replicas

Fig. 5 M1-Characterization of Pbzip2 application with slo::Throughput(40).

Simplifying and Implementing Service Level Objectives for Stream Parallelism 17

Regarding the slo::Latency attribute, we tested this SLO under different
configurations to evaluate if the strategy impacts on the application perfor-
mance. For instance, we tested in a video streaming application using a file
as an input to simulate a typical execution. A representative outcome of this
experiment is shown in Figure 6 with a latency constraint of 1000 milliseconds,
which simulates the definition of a representative SLO by the user.

In Figure 6, the strategy is characterized by the measured latency. We also
presented the number of replicas used in different instants of the execution.
Considering the results from Figure 6, we can identify that the latency varied
during the execution because some frames require more time to be processed.
Thus, causing unpredictable variations. Despite the adaptive strategy changed
the number of replicas when necessary responding to the latency oscillations,
some SLO violations occurred due to such short-duration fluctuations. Under
a more stable workload trend, the adaptive strategy is expected to find a
suitable number of replicas and maintain this number throughout the entire
execution.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

L
a
te

n
c
y
 (

m
s
)

Pbzip2 − Strategy of Adaptive Parallelism for Latency

Latency
Latency constraint

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Replicas

Fig. 6 M1-Lane Detection application with slo::latency(1000 ms).

Concerning the use of the slo::CPU SLO, Figure 7 shows the execution of
the Pbzip2 application with the attribute defining the maximum utilization
to 60%, which is an empirically defined scenario, simulating an execution that
could have a CPU load slightly higher than half of the machine’s resources.

18 Dalvan Griebler et al.

Such a scenario is representative of applications running on shared environ-
ments. We tested this SLO strategy with two representative threshold values,
using the environment variable (SLO THREASHOLD): 10 and 20%. These were
the most suitable thresholds for stream parallelism, as seen in [39]. We also
ran one variant using the blocking mode (-spar blocking compilation option
in SPar) that tends to consume fewer CPU resources by only distributing
new tasks upon requests from the active threads. The results are compared to
the CPUlimit utility tool, which also was set to limit the CPU usage in 60%.
For the tests using CPUlimit, we set a number of application threads equal to
the number of hardware threads, which is what is done by default in several
runtimes. The self-adaptive strategy, on the other hand, uses a custom number
of active threads by changing the status of the replicas at run-time according
to the heuristic policy implemented (Section 4.1.3).

 30

 35

 40

 45

 50

 55

 60

C
P

U
s
 u

ti
liz

a
ti
o
n
(%

)

Pbzip2 − Max CPUs utilization 60%

slo::CPU−Thr10
slo::CPU−Thr20

slo::CPU−Blk−Thr10
slo::CPU−Blk−Thr20

CPUlimit
Max Utilization

 10

 11

 12

 13

 14

 15

 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Fig. 7 M1-Characterization of Pbzip2 application with slo::CPU(60).

In the results from Figure 7, we can observe that CPUlimit was unable
to enforce the required SLO. It is relevant to highlight that all executions
presented a high CPU utilization in the first second. This event is caused by
the application startup routines, such as threads and queues creation. The
threshold of 10% introduced instability by triggering too frequent changes in
the number of replicas, which also induced variation in CPU utilization. On
the other hand, the threshold of 20% was the most accurate and stable one.
By using the -spar blocking compilation flag, it reduced the CPU utiliza-

Simplifying and Implementing Service Level Objectives for Stream Parallelism 19

 50

 60

 70

 80

 90

 100

C
P

U
s
 u

ti
liz

a
ti
o
n
(%

)

Pbzip2 − Max CPUs utilization 90%

slo::CPU−Thr10
slo::CPU−Thr20

slo::CPU−Blk−Thr10
slo::CPU−Blk−Thr20

CPUlimit
Max Utilization

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 20 40 60 80 100 120

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Fig. 8 M1-Characterization of Pbzip2 application with slo::CPU(90).

tion. Consequently, this resulted in an opportunity to use more replicas in the
parallel region.

Figure 8 introduces the results of CPU utilization with a higher SLO value
of at most 90% CPU utilization. Such a scenario was tested in order to evaluate
the executions when almost all the machine resources available could be used.
It tends to impact in the number of replicas used by the adaptive strategy.
Comparing the different versions, we can visualize that the threshold 20%
again caused fewer SLO violations by reaching a stable number of replicas
after the first calibration phase. The CPUlimit presented oscillations in the
utilization while the -spar blocking compilation flag again enabled the use
of additional replicas and avoided SLO violations.

We now show the results obtained by running with the slo::CPU SLO
with all the considered applications. The results presented are an average of 10
executions. In Figure 9, is shown the throughput of the execution considering
the three representative applications, and two representative slo::CPU SLO
configurations: 60 and 90%. It is important to note that the SLO strategies
are compared to a static degree of parallelism version using the CPUlimit for
SPar and Intel TBB.

Considering the SLO of 60%, it is possible to identify a similar outcome
regarding the different applications. In the self-adaptive executions, when us-
ing the spar blocking compilation flag, it achieved a higher throughput rates
than the default non-blocking execution. The self-adaptive strategy dynami-

20 Dalvan Griebler et al.

cally tunes the number of replicas resulting in the highest throughput rates.
This result indicates that the way in which CPUlimit works (i.e., continu-
ously pausing and resuming the target process) causes performance overhead.
CPUlimit in SPar had a lower throughput, while TBB and SPar Blocking
achieved better performance.

 20

 40

 60

 80

 100

 120

 140

LaneDetec.(60%)

PersonRec.(60%)

Pbzip2(60%)

LaneDetec.(90%)

PersonRec.(90%)

Pbzip2(90%)

 20

 40

 60

 80

 100

 120

 140

T
h

ro
u
g
h
p
u
t
(f

ra
m

e
s
 p

e
r

s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
P

S
)

Average Throughput

slo::CPU−Threshold10
slo::CPU−Threshold20
slo::CPU−Blk−Threshold10
slo::CPU−Blk−Threshold20

CPUlimit
CPUlimit−Blk
TBB−CPUlimit

Fig. 9 M1-Throughput of applications. Left side in frames per second refers to video ap-
plications. Right side in MBPS is related to the throughput of Pbzip2.

The result of running with slo::CPU in 90% showed similar results with
respect to 60%. Although the contrasts between our generated self-adaptive
strategy and CPUlimit were smaller, our strategy again was significantly bet-
ter in most cases. In Lane Detection with 90% CPU utilization SLO, both
TBB and SPar blocking achieved the highest throughput. CPUlimit blocked
significantly less the threads with the low CPU restriction of 90% CPU uti-
lization SLO, which increased the application performance. In Lane Detection,
the TBB version outperformed SPar because TBB improves the load balanc-
ing, while in Person Recognition and Pbzip2 both versions achieved similar
performance. Considering the different applications and their execution char-
acteristics, it is possible to note that CPUlimit performed better in those ap-
plications with a more balanced load, while performed worst in the irregular
processing applications (Person Recognition). This indicates that CPUlimit is
not a suitable alternative for limiting CPU utilization in stream processing

Simplifying and Implementing Service Level Objectives for Stream Parallelism 21

applications, which are usually unbalanced because of their intrinsic dynamic
nature.

In order to further characterize CPUlimit, we also evaluated the impact
of the number of replicas. Figure 10 presents the results on Pbzip with a
representative slo::CPU SLO of 60%. In this test, the results from our self-
adaptive strategy are compared to a static number of replicas in SPar and
TBB managed by CPUlimit. The throughput of our strategies is presented in
all number of replicas because any of those numbers could be used during the
execution, depending on the decisions made by the regulator algorithm. It is
possible to note that the configuration using 12 replicas was the best CPUlimit
configuration in SPar and TBB, although the self-adaptive strategy in blocking
mode still achieved the highest throughput. Regarding CPUlimit, the blocking
mode only achieved a better performance in specific cases comparing to the
default non-blocking mode. Comparing the results where TBB outperformed
SPar running with one application thread per hardware thread in Figure 9, the
several number of replicas in TBB only won with 14 and 16 replicas. On the
other hand, SPar with the blocking mode outperformed TBB in most cases.

 0

 10

 20

 30

 40

 50

 12 14 16 18 20 22 24

T
h

ro
u

g
h

p
u

t
(M

B
P

S
)

Number of Replicas

Pbzip2 − Max CPUs utilization 60%

slo::CPU−Threshold10
slo::CPU−Threshold20
slo::CPU−Blk−Threshold10
slo::CPU−Blk−Threshold20

CPUlimit
CPUlimit−Blk
TBB−CPUlimit

Fig. 10 M1-CPUlimit characterization with different number of replicas.

The outcome from Figure 10 highlights the correlation between the num-
ber of replicas and the application throughput, showing that using a tool like
CPUlimit for limiting the CPU utilization SLO is inefficient in the stream pro-
cessing context. The results indicate that even if CPUlimit is used, a suitable
number of replicas has still to be found. However, finding a suitable number

22 Dalvan Griebler et al.

of replicas tends to be a complex task in stream processing applications. Ad-
ditionally, the number of replicas often has to be adapted during execution
according to performance or efficiency goals, because this class of applications
runs without a defined end of the computation. Therefore, rerun the appli-
cation multiple times until a suitable number of replicas is found, it becomes
unfeasible for stream processing applications. Consequently, our strategy that
dynamically adapts the number of replicas in SPar at run-time is a feasible
and effective approach, which showed promising performance outcomes.

In Figure 11, we analyze a different scenario, where the user requires a
throughput as well as an energy constraint. This scenario exploits the usage
of energy strategies. The defined SLO throughput (slo::Throughput) was 20
tasks per second and power consumption (slo::Power) lower than 65 watts
for the Pbzip application. In this test, we add some external noise to show that
our strategy for controlling performance and energy succeeds in providing the
required SLO even in the presence of unexpected behaviors.

 10

 30

 50

 70

 90

T
h
ro

u
g

h
p
u

t
(T

a
s
k
s
 P

e
r

S
e
c
o

n
d
)

Measured
Required (MIN)

 65

 90

 115

P
o
w

e
r

(W
a

tt
s
)

Measured
Required (MAX)

 4

 8

 12

 16

 20

 0 50 100 150 200 250
 1
 1.2
 1.4
 1.6
 1.8
 2
 2.2
 2.4

N
u
m

b
e
r

o
f

C
o
re

s

F
re

q
u
e
n
c
y
 (

G
H

z
)

Time (Seconds)

Number of Cores
Clock Frequency

Fig. 11 M2-Pbzip2 application with slo::Throughput(20) and slo::Power(65).

In particular, besides the usual calibration done in the first seconds of exe-
cution, after 50 seconds from the start of Pbzip, we start another application
on the same machine. Since the two applications share some resources (i.e.,
cores, memory, among others), the throughput of Pbzip2 starts to decrease. In
response to this issue, our generated code and the compatible runtime recom-
putes the prediction models, now considering the presence of external inter-
ference. As a consequence, as we can see from the bottom part of Figure 11,
our generated strategy with its runtime increases the number of replicas of the
middle stage from 12 to 14. When the other interfering application terminates
(around 120 seconds from the start of Pbzip2), our generated strategy recom-
putes the models and decreases the number of replicas from 14 to 13. As we
can see from the two upper parts of the figure, our generated strategy uses
its runtime to satisfy the user requirements throughout the entire execution

Simplifying and Implementing Service Level Objectives for Stream Parallelism 23

(excepts for the phases where the models are computed), independently from
the presence of other applications running on the system.

In Figure 12, we analyze the Lane Detection application, in a scenario
where it produces no more than 50 frames per seconds. In such a case, using all
the available resources could be inefficient, since they could be idle for most of
the time. To avoid such scenario, we set a utilization SLO (slo::Utilization)
of 80%. In the upper part of Figure 12, we report the utilization when an SLO
is specified and when it is not specified. In the bottom part, we report the
power consumption. As shown by the result when an SLO is not specified, the
utilization would be around 20%. This utilization means that the threads of
the application would spend 80% of the time waiting for new frames to arrive.
By requiring a minimum utilization of 80%, our generated strategy decreases
the number of resources allocated to the application, decreasing the power
consumption from 90 watts to 55 watts. This event occurs without decreasing
the overall performance of the application. Indeed, the threads still spend some
time waiting for new data, but it is reduced from 80% to 5% (the utilization
is around 95%).

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o

n
 (

%
)

Measured Utilization (With SLO)
Measured Utilization (Without SLO)

Required Utilization (MIN)

 40

 55

 70

 85

 100

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n

(W
a
tt
s
)

Time (Seconds)

Measured Power (With SLO)
Measured Power (Without SLO)

Fig. 12 M2-Lane Detection application with slo::Utilization(80).

The target of the experiment in Table 3 is to demonstrate that paralleliza-
tion is not only useful for improving the performance of an application, but it
can also be used to reduce its power consumption. In a nutshell, we want to
show that a parallel application with the same performance of the sequential
one has lower power consumption. We were able to limit the SLO throughput
by using the slo::Throughput combined with slo::Power.

The interpretation we would like to give to these results is that, even if
the performance of a sequential application is satisfactory, parallelizing it may
still be useful for reducing its power consumption. This effect occurs since by
increasing the number of replicas (and thus the number of cores used by the
application), we can reduce the clock frequency while keeping the same per-
formance. Since the power consumption increases linearly with the number of
cores but more than quadratic with the clock frequency [8], running an appli-
cation on more cores at a lower frequency is usually more energy efficient than

24 Dalvan Griebler et al.

Pbzip2
Lane

Detection
Person

Recognition

Power Consumption
Reduction (%)

−9.43% −10.37% −7.39%

Table 3 Power consumption reduction obtained by a parallel application with the same
throughput of the sequential one.

running it on fewer cores at a higher frequency. Having tools and methodolo-
gies for doing that automatically and with low code intrusion, like those we
proposed through SLO attributes in this work is of paramount importance for
enabling such techniques in real-world scenarios.

6 Conclusion

In this work, we presented a new and simpler way to express SLOs in sequential
source codes. Our approach was designed to target stream processing appli-
cations along with its parallelization support. We validated this approach by
implementing it in the SPar language and compiler, which now recognizes the
C++11 SLO attributes and automatically performs source-to-source transfor-
mations to the self-adaptive strategies implemented in the FastFlow and
Nornir libraries. The main advantage is that application programmers can
now simply define SLOs by inserting the attributes in the source code and the
compiler generates the appropriate self-adaptive strategy to meet the target
SLO. This new approach does not require from programmers implementation
expertise either system resource management.

Moreover, our implemented solution has proven to be efficient and offers
many opportunities to improve the QoS in stream processing applications. We
were able to reduce power consumption and increase performance in certain
cases. Regarding the CPU utilization SLO, the performance was improved in
most cases compared with CPULimit. While our strategy relies on changing
the number of replicas, CPULimit works at the operating system level lim-
iting the CPU utilization by continuously pausing and resuming the target
process. Although the goals and efforts in this work were more in the abstrac-
tion of SLOs implementation, we visualize a set of future works. For instance,
a deep performance validation can be conducted to cover different workloads
and stream processing scenarios. We also plan to implement other self-adaptive
strategies and SLOs. We would like to refine our slo::CPU and slo::Latency

SLOs to combine them with power consumption SLOs. Eventually, our ap-
proach could be extended to other computing environments such as cloud or
cluster architectures.

Acknowledgements This study was partially funded by the Coordenação de Aperfeiço-
amento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, and by the
FAPERGS 01/2017-ARD project ParaElastic (No. 17/2551-0000871-5). We would like to

Simplifying and Implementing Service Level Objectives for Stream Parallelism 25

thank Laboratrio de Alto Desempenho (LAD) from PUCRS for partially providing comput-
ing resources.

References

1. M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: High-Level
and Efficient Streaming on Multi-core. In Programming Multi-core and Many-core
Computing Systems, volume 1 of PDC, page 14. Wiley, 2014.

2. M. Aldinucci, M. Meneghin, and M. Torquati. Efficient Smith-Waterman on Multi-core
with FastFlow. In Proceedings of the Euromicro Conference on Parallel, Distributed
and Network-based Processing, pages 195–199, 2010.

3. F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer, and D. S. Nikolopoulos.
Application-Level Energy Awareness for OpenMP. In International Workshop on
OpenMP, pages 219–232. Springer, 2015.

4. H. C. M. Andrade, B. Gedik, and D. S. Turaga. Fundamentals of Stream Processing.
Cambridge University Press, New York, USA, 2014.

5. J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly, and S. Ama-
rasinghe. Siblingrivalry. In Proc. of the 2012 Intl. Conf. on Compilers, architectures
and synthesis for embedded systems - CASES ’12, page 91, New York, New York, USA,
Oct. 2012. ACM Press.

6. B. Beyer, C. Jones, J. Petoff, and N. R. Murphy. Site Reliability Engineering. O’Reilly,
Boston, USA, 2016.

7. R. Buyya, C. Vecchiola, and T. Selvi. Mastering Cloud Computing. McGraw Hill, 2013.
8. A. P. Chandrakasan and R. W. Brodersen. Minimizing Power Consumption in Digital

CMOS Circuits. Proceedings of the IEEE, 83(4):498–523, 1995.
9. CPUlimit. CPU Usage Limiter for Linux roadmap <http://cpulimit.sourceforge.net/>,

2018. Last access Dec, 2018.
10. M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S. Nikolopoulos.

Prediction-based power-performance adaptation of multithreaded scientific codes. IEEE
Transactions on Parallel and Distributed Systems, 19(10):1396–1410, Oct 2008.

11. M. Danelutto, J. D. Garcia, L. M. Sanchez, R. Sotomayor, and M. Torquati. Introducing
Parallelism by Using REPARA C++11 Attributes. In Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing, pages 354–358. IEEE,
2016.

12. D. De Sensi, T. De Matteis, and M. Danelutto. Simplifying Self-Adaptive and Power-
Aware Computing with Nornir. Future Generation Computer Systems, pages –, 2018.

13. D. De Sensi, M. Torquati, and M. Danelutto. A Reconfiguration Algorithm for Power-
Aware Parallel Applications. ACM Transactions on Architecture and Code Optimiza-
tion, 13(4):43:1–43:25, dec 2016.

14. C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster man-
agement. SIGARCH Comput. Archit. News, 42(1):127–144, Feb. 2014.

15. Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. A helper thread based edp
reduction scheme for adapting application execution in cmps. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE Intl. Symposium on, pages 1–14, April 2008.

16. A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion: Self-
Regulating Stream Processing in Heron. Proceedings of the VLDB Endowment, 10:1825–
1836, 2017.

17. D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes. SPar: A DSL for High-
Level and Productive Stream Parallelism. Parallel Processing Letters, 27(01):1740005,
March 2017.

18. D. Griebler, D. De Sensi, A. Vogel, M. Danelutto, and L. G. Fernandes. Service Level
Objectives via C++11 Attributes. In Euro-Par 2018: Parallel Processing Workshops,
page 12, Turin, Italy, August 2018. Springer.

19. D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes. Higher-Level Paral-
lelism Abstractions for Video Applications with SPar. In Parallel Computing is Every-
where, Proceedings of the International Conference on Parallel Computing, ParCo’17,
pages 698–707, Bologna, Italy, September 2017. IOS Press.

26 Dalvan Griebler et al.

20. D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes. High-Level and
Productive Stream Parallelism for Dedup, Ferret, and Bzip2. International Journal of
Parallel Programming, pages 1–19, February 2018.

21. J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing
Systems. John Wiley & Sons, 2004.

22. H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.
Dynamic Knobs for Responsive Power-aware Computing. SIGPLAN Not., 46(3):199–
212, 2011.

23. J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, Jan 2003.

24. J. Li and J. F. Mart́ınez. Dynamic power-performance adaptation of parallel computa-
tion on chip multiprocessors. Proc. of Intl. Symposium on High-Performance Computer
Architecture, pages 77–87, 2006.

25. M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva. Controlling
Software Applications via Resource Allocation within the Heartbeats Framework. In
IEEE Conference on Decision and Control, pages 3736–3741. IEEE, 2010.

26. J. Maurer and M. Wong. Towards Support for Attributes in C++ (Revision 6). Tech-
nical report, The C++ Standards Committee, 2008.

27. M. McCool, A. D. Robison, and J. Reinders. Structured Parallel Programming: Patterns
for Efficient Computation. Morgan Kaufmann, MA, USA, 2012.

28. P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker. Flicker: a dy-
namically adaptive architecture for power limited multicore systems. ACM SIGARCH
Computer Architecture News, 41(3):13, July 2013.

29. K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread reinforcer: Dynamically deter-
mining number of threads via os level monitoring. In Proc. of the 2011 IEEE Intl.
Symposium on Workload Characterization, IISWC ’11, pages 116–125, Washington,
DC, USA, 2011. IEEE Computer Society.

30. J. Reinders. Intel Threading Building Blocks. O’Reilly, USA, 2007.
31. R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi. Adaptive Energy

Minimization of OpenMP Parallel Applications on Many-Core Systems. In Parallel
Programming and Run-Time Management Techniques, pages 19–24, 2015.

32. S. Sridharan, G. Gupta, and G. S. Sohi. Holistic run-time parallelism management
for time and energy efficiency. In Proc. of the 27th Intl. ACM Conf. on Intl. Conf.
on supercomputing - ICS ’13, page 337, New York, New York, USA, June 2013. ACM
Press.

33. R. Sturm, W. Morris, and M. Jander. Foundations of Service Level Management.
SAMS, Boston, USA, 2000.

34. M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven threading. In Proc. of
the 13th Intl. Conf. on Architectural support for programming languages and operating
systems - ASPLOS XIII, volume 42, page 277, New York, New York, USA, Mar. 2008.
ACM Press.

35. W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A Language for Streaming
Applications. In Proceedings of the International Conference on Compiler Construction,
pages 179–196, Grenoble, France, 2002. Springer.

36. E. Totoni, N. Jain, and L. V. Kalé. Power management of extreme-scale networks with
on/off links in runtime systems. TOPC, 1(2):16, 2015.

37. E. Totoni, J. Torrellas, and L. V. Kale. Using an adaptive hpc runtime system to
reconfigure the cache hierarchy. In Proc. of SC 2014, pages 1047–1058. IEEE Press,
2014.

38. V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis, N. Bellas,
H. Vandierendonck, and D. S. Nikolopoulos. A Programming Model and Runtime Sys-
tem for Significance-aware Energy-efficient Computing. SIGPLAN Not., 50(8):275–276,
2015.

39. A. Vogel, D. Griebler, D. D. Sensi, M. Danelutto, and L. G. Fernandes. Autonomic and
Latency-Aware Degree of Parallelism Management in SPar. In Euro-Par 2018: Parallel
Processing Workshops, page 12, Turin, Italy, August 2018. Springer.

40. E. J. Weyuker. Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering, 14(9):1357–1365, 1988.

	Introduction
	Related Work
	SPar: High-Level Stream Parallelism
	Service Level Objective for Stream Parallelism
	Experiments
	Conclusion

