
Autonomic management experiences
in structured parallel programming

Marco Danelutto
Dept, Computer Science

Univ. of Pisa)
marco.danelutto@unipi.it

Daniele De Sensi
Dept, Computer Science

Univ. of Pisa)
desensi@di.unipi.it

Gabriele Mencagli
Dept, Computer Science

Univ. of Pisa)
mencagli@di.unipi.it

Massimo Torquati
Dept, Computer Science

Univ. of Pisa)
torquati@di.unipi.it

Abstract—Structured parallel programming models based on
parallel design patterns are gaining more and more impor-
tance. Several state-of-the-art industrial frameworks build on
the parallel design pattern concept, including Intel TBB and
Microsoft PPL. In these frameworks, the explicit exposition of
parallel structure of the application favours the identification of
the inefficiencies, the exploitation of techniques increasing the
efficiency of the implementation and ensures that most of the
more critical aspects related to an efficient exploitation of the
available parallelism are moved from application programmers
to framework designers. The very same exposition of the graph
representing the parallel activities enables framework designers
to emplace efficient autonomic management of non functional
concerns, such as performance tuning or power management.
In this paper, we discuss how autonomic management features
evolved in different structured parallel programming frameworks
based on the algorithmic skeletons and parallel design patterns.
We show that different levels of autonomic management are pos-
sible, ranging from simple provisioning of mechanisms suitable to
support programmers in the implementation of ad hoc autonomic
managers to the complete autonomic managers whose behaviour
may be programmed using high level rules by the application
programmers.

Index Terms—Algorithmic skeletons, parallel design patterns,
autonomic managers, rule based control, structured parallel
programming.

I. INTRODUCTION

Structured parallel programming is a methodology based
on the adoption of composable, parametric parallel building
blocks that capture and model simple parallelism exploita-
tion patterns. At the very beginning, these building blocks
were named algorithmic skeletons (after Cole’s work [8]),
and where provided to HPC application programmers as
abstractions of sequential programming languages (libraries
in imperative languages, objects in OO languages, higher
order functions in functional languages, etc. . .). Later on,
the concept of design pattern, developed within the software
engineering community, has been moved in the parallel pro-
gramming context with the parallel design patterns concept,
promoting the very same idea of algorithmic skeletons, i.e.
that parallelism exploitation in parallel application can be
expressed though proper usage of parallel patterns, alone or in
composition, completed by supplying proper ”business logic
code” parameters capturing the actual business logic of the
application [18].

In both cases, the parallel architecture of the application
is completely exposed by the skeleton/pattern composition
chosen by the application programmer. This represents the key
benefit of structured parallel programming models with respect
to classical, unstructured ones. On the one hand, the availabil-
ity of different, and in many cases alternative, skeleton/pattern
compositions suitable to model the application increases the
productivity of parallel application programmers and decreases
the effort required to design the parallel application. On the
other hand, the implementation toolchain (compilers, libraries,
interpreters) may leverage the knowledge about the parallel
structure of the application to exploit different well-known
techniques aimed at providing efficient parallelism exploitation
as well as efficient architecture targeting. Overall, structured
parallel programming leaves the application programmers only
in charge of figuring out the proper qualitative parallelism
exploitation aspects and move to the system/framework pro-
grammers all the duties related to quantitative aspects and,
even more important, of all those cumbersome and error-
prone aspects more related to correct and efficient usage of
base mechanisms (concurrent activities setup, communication,
synchronization).

Structured parallel programming has been for a long time
subject of activities of different research groups all around the
world [7], [14], [15], [17], [21]. In [4], parallel design patterns
have been mentioned as a realistic opportunity to overcome
difficulties in parallel programming. After a while, this concept
permeated to the industry, with several distinct ”industrial”
frameworks adopting some of the structured parallel program-
ming concepts and methodologies.

For example, Intel Thread Building Block library [19] pro-
vides parallel patterns modelling different aspects of parallel
applications (high level patterns and lower level commu-
nication and synchronization mechanisms) through patterns
encapsulated in modern C++ classes. Similarly, Microsoft Par-
allel Pattern Library [20] provides different kinds of parallel
patterns to programmers of standard Microsoft applications.
All in all, even OpenMP [9] provides a kind of single data
parallel pattern (the parallel for) that can be used to model
quite a number of data parallel kernels as it may be used, by
specifying proper additional parameters, as a map, a reduce, a
map-reduce and a stencil data parallel pattern. Last but not
least, the C++ standard committee is pushing forward the

idea of parallel execution of STD library ”algorithms”. In the
forthcoming versions of the language, an additional parameter
will be accepted by STD algorithms (sort, transform, etc.)
making the computation of the algorithm parallel (multi-
threaded). Although C++ STD algorithms are not exactly par-
allel patterns, the underlying idea is the very same of structured
parallel programming community: provide the programmer
with ready to use parallel solutions that can be used as building
blocks speeding up execution of standard applications, with the
parallelization effort moved from application programmers to
library/language implementation programmers.

A. Autonomic management of non functional concerns

Independently of the programming framework used, when
developing parallel applications the main goal of the program-
mer is twofold: on the one hand the parallel application must
be functionally correct, while on the other hand it must also
be efficient, whatever measure (or mix of measures) we want
to take into account (time, energy consumption, security, etc.).
This second aspect is related to the efficient achievement of
non functional features, that is features that do not concur
to ensure what we compute (i.e. the application results),
but rather concur to determine how we actually compute
the application results. Typically, average performance (either
considering latency or throughput), power management, load
balancing as well as fairness may be considered non functional
concerns in parallel application execution.

A more concrete instantiation of non functional concern
may better explain the concept. Performance of a parallel ap-
plication is definitely impacted by the parallelism degree used
in the execution of taht application. Usually, a trade-off has to
be found among higher parallelism degrees (hopefully leading
to decreased completion/service times), and lower parallelism
degrees (ensuring smaller parallelism management overheads).
Any programmer writing parallel applications has experienced
coming to the ”knee” point where speedup stops increasing
with parallelism degree due to overheads becoming important
and/or computation grain of parallel activities becoming too
light.

Another typical example of non functional concern is
power management. Dynamic Voltage and Frequency Scaling
(DVFS) [16] techniques may be used to improve execution
times on standard multi-cores. However, the higher the fre-
quency the higher the power consumption. Therefore a trade-
off has to be ensured among performance and power consump-
tion, especially in those cases were power consumption is a
synonym of battery life.

Structured parallel programming helps programmers to em-
place decent solutions for autonomic management of these
non functional concerns. Being parallel application structure
expressed as composition of patterns, the management of non
functional concerns at application level may be reduced to
management of non functional concerns at the single pattern
level combined with rules that define non functional behaviour
of composition of patterns.

Let’s look at the autonomic management of the parallelism
degree in a parallel for/map pattern. The programmer may
indicate a parallelism degree of the map pattern that leads to
inefficient parallelism exploitation in two ways:

• by expressing a too small parallelism degree, which will
result in under utilization of the available resources, or

• by expressing a too large parallelism degree, which will
result in a too high overhead.

The parallel for/map implementation can be easily equipped
with additional code that monitors the initial part of the
computation and possibly computes a better parallelism degree
for the pattern. The reconfiguration of parallelism degree will
take a predictable amount of time, in general, thus leaving
the parallel for/map implementation the ability to decide
whether or not to reconfigure itself depending on the estimated
execution time. In case the parallel for/map is a component
of another pattern (e.g. a pipeline processing a stream of data
parallel tasks) the performance model of the topmost pattern
may be used to figure out a) whether a reconfiguration is
needed relative to the overall parallelism degree and b) where
it has to be applied in case (e.g. replicating one or more data
parallel pipeline stages or increasing the parallelism degree of
the stages).

B. Contributions

Our contribution consists in a review of three different
approaches used in structured parallel programming to include
autonomic management of non functional features in struc-
tured parallel programming frameworks. In particular:

• we discuss different approaches providing different auto-
nomic management possibilities

• we discuss solutions targeting different architectures
• we outline possibilities to include similar solutions in ex-

isting state-of-the-art parallel programming frameworks
We wish to point out that, despite the fact a number

of domain specific or non structured parallel programming
frameworks exist that include different kind of autonomic
management features, we concentrate on the benefits coming
from synergies deriving from joint adoption of structured
parallel programming techniques and autonomic management
techniques.

The rest of the paper includes three sections describing three
different autonomic management experiences contributed by
our research group (Sec. II to IV). Sec. VI outlines possi-
bilities to include autonomic management in state-of-the-art
programming frameworks. Finally Sec. VII draws conclusions
and prospect future work.

II. FULL SINGLE CONCERN MANAGEMENT: BEHAVIOURAL
SKELETONS IN GRID COMPONENT MODEL

Behavioural skeletons [1], [2] have developed in early
’00, when the “fashion buzzword” in parallel and distributed
computing community was grid computing. Within the EU
funded Network of Excellence project CoreGRID and the
spin-off STREP project GridCOMP, the concept of algorith-
mic skeleton has been extended to include some kind of

Fig. 1. Sample behavioural skeleton structure

autonomic control taking care of the performance of the
parallel/distributed application after the programmer correctly
expressed its parallel behaviour through proper algorithmic
skeleton compositions (see Fig. 1).

Autonomic management of performance1 was achieved by
associating a further concurrent activity to each one of the
algorithmic skeletons/parallel patterns used. This additional
activity was running a Monitor-Analyze-Plan-Execute (MAPE)
loop using proper sensors and actuators to monitor the run-
ning application and to implement the decisions taken after
analysing the available data. The pairing of a computational
pattern with its autonomic manager was called Behavioural
Skeleton. Below we detail the two most important features in-
troduced by Behavioural skeletons along with a brief summary
of the results achieved with real applications on computational
grids.

A. Sensor/actuator pattern instrumentation

The first important feature introduced by behavioural skele-
tons was the concept of structured sensors and actuators. In
non-structured parallel programming frameworks the parallel
structure of the application is not exposed to the tools.
Therefore any sensor used to figure out the actual and current
behaviour of an application must be directly programmed by
the application programmer, the only one having a clear picture
of the overall parallel schema of the application. In case paral-
lelism is only expressed through (composition of) algorithmic
skeletons/parallel patterns, proper sensoring instrumentation
may be provided by the algorithmic skeleton/parallel pattern

1Completion time or service time of the application.

designer capturing the essential and worth properties of the
skeleton/pattern execution. Similarly, actuators may be embed-
ded in skeleton/patterns directly by their designer, providing
meaningful actions for that particular parallelism exploitation
structure.

As an example, let us consider two common stream parallel
patterns: pipelines and farms. The pipeline pattern applies
a set of cascading functions f1, . . . , fk over all the items
(xi) appearing onto an input stream, delivering the results
(fk(. . . (f1(xi) . . .)) over its output stream. Parallelism is
exploited in parallel computation of the different stages (activ-
ities computing the different fj) over different items of the in-
put stream. The farm pattern maps the same computation (say
applying function f) over all the items xi appearing onto an
input stream, delivering results (f(xi)) over its output stream,
possibly maintaining the input/output ordering. Parallelism is
exploited by using a set of identical “workers” computing f
over different items of the input stream.

In these patterns, sensors may be easily programmed to
report inter-arrival/departure times of input elements to/from
the pipeline stages or to/from the farm workers, and pattern-
specific actuators may be provided, such as:

• adding or removing a worker from the farm pattern im-
plementation, thus increasing/decreasing its performance,

• merging consecutive stages of the pipeline that altogether
do not represent bottlenecks for the overall computation
(i.e. whose sum of service times is still smaller than the
service time of at least one other stage in pipeline),

• splitting previously merged stages, in case their merged
service time happens to be the largest in the pipeline,

• transforming a sequential pipeline stage into a farm, if its
service time is the largest in the pipeline,

• removing a farm from a pipeline stage in case the service
time of a single worker becomes smaller than the service
times of other pipeline stages.

All this actions may be implemented only because the
structure of the parallel computation is known and well-
defined. The reader may easily figure out the effort required
to implement the same kind of “actuators” when a parallel
application is explicitly programmed using low level mecha-
nism/libraries.

B. Rules-based non functional concern management

The availability of sensors and actuators specific to the
used skeleton/patterns enables the implementation of efficient
autonomic management policies for skeleton/pattern based
applications. These policies are de facto the control program
of our parallel application non-functional behaviour (perfor-
mance, in case of behavioural skeletons).

In order to provide maximum flexibility, behavioural skele-
tons adopted a business rule system (JBOSS at that time)
to provide the user the possibility of programming the
behavioural skeleton’s application control program through
condition-action rules where:

• conditions where expressed as formulas involving read
through sensors, and

• actions where expresses using (proper compositions of)
actuator calls.

Rules were prioritized and additional state variables were
supported to make control program stateful, which was used–
as an example–to avoid useless cycling among pairs of config-
urations equally far away (or close to) from the optimal steady
state configuration.

In addition, the user could express target performance values
(i.e. service level agreements) together with manager rules to
drive the manager actions.

C. Results

The most important consequence of the rule based man-
agement in the MAPE loop was the simplicity observed in
the implementation of quite complex autonomic parallelism
management policies.

At the end of the GridCOMP project, a long running
application processing images from medical equipment was
implemented using behavioural skeletons and was demon-
strated to be able to automatically adapt the parallelism degree
of its different components, correctly and timely enforcing
the user supplied frame rate (service level agreement) [2].
In particular, in a pipeline where the computing stages were
parallelized using farms, the detection of an under utilized
farm stage first led to the enforcement–by the top level pipeline
rules–of an increase of performance in the stage supplying
the input stream items, and then dynamically adjusted the
parallelism degrees of the other stages such that a) the user
supplied frame rate service level agreement was met and b) no
load imbalances were observed among parallel pipeline stages,
thus increasing the efficiency of the application.

Overall, the Behavioural skeleton experience showed that
autonomic management of non functional features through
properly programmed MAPE loops perfectly pairs with the
structured parallel programming principles. The exposition of
the parallel structure of the program enables programmers
to include in the MAPE loop notable rules and efficient
control policies. By expressing application parallelism through
skeletons/parallel patterns, notable and efficient sensors and
actuators can be exploited, while not increasing the program-
ming effort required to the application programmer compared
to the case where autonomic management was not considered
at all.

III. PROVIDING MECHANISMS FOR ad hoc AUTONOMIC
MANAGEMENT: FASTFLOW

FastFlow is a structured parallel programming framework
designed, developed and maintained by members of Univ. of
Pisa and of Torino since early ’00s mainly targeting shared
memory architectures, with limited support for accelerators2.
FastFlow provides the programmer with three distinct types
of parallel design patterns: i) “core” patterns, ii) high level
patterns and iii) parallel building blocks. All those patterns

2Framework web page is at http://calvados.di.unipi.it/fastflow and the code
may be accessed via Github at https://github.com/fastflow/fastflow

are provided via fully C++14 compliant template classes, so
that programmers of a parallel application may build a pattern
expression completely modelling the parallel behaviour of the
application, and then invoke pattern expression computation
separately. The differences in between the three distinct class
of patterns can be stated as follows:

• core pattern model simple parallel patterns (e.g. pipeline
and farms in the stream parallel pattern set or map and
reduce in the data parallel set). They are usually used
in composition to model more complex/realistic parallel
execution scenarios.

• high level patterns model more complex patterns (e.g.
divide and conquer or pool evolution patterns) and are
more frequently used as the sole pattern modelling the
complete parallelism within an application, even if they
can be freely nested in/with other patterns, if needed.

• finally parallel building blocks present a lower level of
abstraction with respect to the other two kind of patterns
and are intended as “parallel bricks” to be used to
implement other core or high level pattern to be provided
to the application programmer.

Independently of the patterns used, the elementary abstraction
provided by FastFlow is the node abstraction: a thread with
an input task queue and an output task queue which executes
an infinite loop. At each iteration the node looks for a task in
the input queue, computes the task and subsequently delivers
the result over the output queue. As an example, pipelines are
built by chaining nodes and using a single queue item as output
queue of node i and input queue of node i+1. Farms and maps
may be implemented in different ways, including using a set
of nodes all fetching tasks from a single queue and delivering
tasks to another single queue or using two additional nodes,
one actively scheduling input tasks from the input queue to
the input queues of a set of worker nodes, and one gathering
results from the worker nodes and delivering them into its own
output queue.

A. Alternative communication implementation mechanism

FastFlow communications happen to leverage the shared
memory model of the target architecture. Items passed through
node input/output queues are pointers to data and the FastFlow
queues are implemented in a very efficient lock-free way, such
that sending or receiving a single item to/from a queue is an
operations that takes from a few nanoseconds to about one
hundred nanoseconds on state-of-the-art shared memory archi-
tectures3. The conceptual model behind this implementation is
that when a node communicates a pointer to another node, it
formally gives the second node the capability to operate on
the pointed data, implicitly subscribing the fact it (the first
node) will not access any more that data. Being the ultra
fast FastFlow communications implemented with the usage
of additional threads and active wait spin-locks4, alternative

3depending on the relative location of the sending and the receiving node:
same/different core/socket

4That only take place on worst case scenarios, however.

more classic communication mechanisms are provided based
on classical passive, shared communication buffer data struc-
tures, that may be used when computational grain of parallel
activities is sufficiently large.

The choice relative to which communication mechanisms
has to be used is up to the programmer. FastFlow patterns
provide by default the ultra-fast spin-lock based mechanism.
Programmers may ask to use the other communication mech-
anisms for the whole program or for portions (pattern sub
expressions) of the program both before running the pattern
expression representing the parallel application and during
execution. The requests are issued using the FastFlow commu-
nication type “actuators” that operate on single patterns or on
composition of FastFlow patterns. This opens perspectives to
the possibility of implementing autonomic management of the
communications mechanisms that use the default mechanisms
when the application starts and then switch to other mode in
case the grain of parallel computations turns out to be large
enough. This is possible as FastFlow frameworks provides
interfaces to access “sensor” data measuring the input pressure
of a node (via number of items in the input queue and/or
number of failed pops from the queue) as well as (average)
time spent in computing the single task in a node.

B. Concurrency throttling mechanisms

FastFlow also provides mechanisms to dynamically vary the
parallelism degree of core patterns. As an example, FastFlow
farms may be started providing two parameters: the maximum
parallelism degree possible for the pattern (nwmax) and the
actual parallelism degree required once the pattern expression
to which the farm pattern belongs will be executed (nw).
While executing, calls may be made to farm implementation
“actuators” to increase or decrease by a given amount (1
or larger) its parallelism degree. This enables the usage of
“dynamic” farms whose parallelism degree nw may vary in
the interval [1, nwmax]. Actually, when the farm is shrinked
down to nw = 1 it can be dynamically re-mapped to a single
node with no scheduler and gatherer additional nodes.

This mechanism, enables, as the other one relative to com-
munication implementation, the possibility for the program-
mers to implement ad hoc autonomic management policies
dynamically tuning the parallelism degree of an application,
and it may be incredibly useful in at least two different cases:

• in long running applications with notably different phases
(e.g. a stream processing application computing tweet
analytics that needs to properly take case of “hot spot”
phases), or

• when applications run in non exclusive mode on the target
architecture and additional, external loads may impair
proper dimensioning of the parallelism degree of the
application at hand.

C. Topology optimization mechanisms

Last but not least, the most recent release of FastFlow
provides a further mechanism that may be useful in the

Fig. 2. Sample FastFlow node graph optimizations

perspective of providing programmers with mechanisms suit-
able to implement autonomic management of non functional
features, namely some actuators optimizing the FastFlow node
graph with respect to resource (threads) usage or to the overall
number of resources required to run the pattern expression at
hand.

FastFlow node graphs happen to be built out of the merge
of the sub-graphs used to implement the outermost pattern
expression. As an example, a pipeline expression with two
consecutive farm stages is trivially synthesized with a node
graph where the output gather node of the first farm is directly
connected to the input scheduler node of the second farm.
In case the gather policy of the first farm and the schedule
policy of the second farm are standard (not re-defined by the
programmer), the two nodes may be easily merged, sparing
one thread. Under some more specific conditions on gather-
ing/scheduling policies in the two farms, the two nodes (or
the merged node) may be completely eliminated, connecting
workers of the first farm to the workers of the second farm
with a specific “all-to-all” parallel building block (see Fig. 2).

The FastFlow node graph optimization actuator provides
different operations that may be required by the programmer,
whose actual effects on FastFlow application performance
vary and depend on business logic properties that cannot be
automatically figured out by the framework. Therefore, the
possibility offered to invoke different kind of node graph op-
timizations opens perspectives to implement autonomic man-
agement of the node graph as the application programmers.
However, the node graph optimization has to be invoked be-
fore the pattern expression is computed. This notwithstanding
application programmers may set up different versions of the
application (optimized versions A, B, ... and non optimized
version) or of parts of the application and then use the ones
identified as the most suitable through parameters figured out
from FastFlow sensors.

IV. MULTI-CONCERN MANAGEMENT: NORNIR

Nornir5 is a customizable C++ framework supporting the
development of autonomic and power-aware algorithms for

5http://danieledesensi.github.io/nornir/

parallel applications running on shared memory multicore ma-
chines [11]. Among the other features, Nornir provides ways to
manage structured and unstructured parallel applications and,
particularly, it supports applications written in FastFlow. This
means that if you have a FastFlow application, you may simply
add a few lines of code creating a Manager and passing the
manager a user contract describing the expectations in terms of
non functional concerns of the application user along with the
handle of the FastFlow application (that is the pattern expres-
sion defined the parallel structure of the application). Nornir
has been designed to manage long running applications, that
is applications where time needed to reconfigure the parallel
application (e.g. in terms of adding or removing computing
resources or varying DVFS parameters) may be considered
negligible with respect to the time used to run the application.
Stream parallel applications computing ideally infinite stream
of tasks are also targeted by Nornir. The manager then takes
care of all the activities needed to ensure (best effort) the
user provided contract. In order to ensure the contract, Nornir
autonomically manages different aspects related to the parallel
execution of the application, including voltage/frequency pa-
rameters, thread pinning and concurrency throttling (dynamic
adaptation of application parallelism degree).

A. Multiple non functional concern management

One of the more notable contributions of Nornir consists
in the fact that its autonomic manager ensures (best effort)
a trade-off in between performance and power consumption,
that is the autonomic management is actually pursuing mul-
tiple concerns. Moreover, the multiple concerns taken into
account in Nornir normally push manager decisions in op-
posite directions: looking for performance favours increasing
resource usage and higher frequencies, while looking for
power consumption favours exactly opposite mechanisms,
such as decrease resource usage and operating frequencies of
the available cores. This makes the autonomic management
of both non functional concerns (power and performance)
completely different from the management of a single concern,
such as performance in Behavioural skeletons as outlined in
Sec. II.

Nornir relies on a lower level library (Mammut6) providing
different mechanisms that include sensors and actuators. In
particular, the sensors in Mammut report power consumed in
applications, as well as different machine parameters that af-
fect the parallel behaviour of applications, such as the number
of available cores and the core/cache topology. The actuators
provide, among the others, mechanisms to pin threads to cores,
to move threads across contexts, to enforce particular DVFS
parameters, etc.

B. Predictive modelling

Autonomic management policies implemented in Nornir
consider moves in a space of “configurations”, i.e. tuples
of values for the parameters of interest (parallelism degree,

6http://danieledesensi.github.io/mammut/

thread pinning, frequency values, etc.). In the initial part of the
computation, a small number of configurations are used and
the relevant non functional properties (time and power spent
in the computation of a given amount of tasks) are monitored
using Mammut sensors. Then the measured values are used to
build a simple interpolation model which is subsequently used
to figure out which are the configurations suitable to match
the contract provided to the manger by the programmer/user.
Among those configurations, the manager picks up the more
convenient one and executes the rest of the application with
that configuration. The manager keeps collecting the measures
of interest through Mammut sensors throughout the entire
application execution, to ensure that the optimal configura-
tion is selected even in presence of performance and power
consumption fluctuations, either caused by external factors, or
due to intrinsic differences between application phases.

This can be considered a learning based approach to parallel
application modelling, of course. However, differently from
other approaches in literature, the learning process does not
require any previous knowledge relative to application be-
haviour. Rather, the knowledge is build while the application
is running. Experiments demonstrated that the initial run of
the application with random configurations has a negligible
impact on application performances (a few tasks are executed
in each of the configurations experimented), while the inter-
polation model derived demonstrates to be precise enough to
identify a worth configuration to continue the execution of the
parallel application matching the user requirements stated in
the manager contract [12].

Is worth pointing out another couple of points relatively
to Nornir. Nornir can be customized by implementing new
prediction policies, by relying on the monitor and actuation
mechanisms already provided by the framework in an abstract
way. However, the Nornir manager policies are coded in the
framework. That is, in case different management policies
need to be implemented, the new code must be implemented
in the framework and it needs to be re-compiled. This repre-
sents quite a difference with respect to Behavioural skeletons
discussed in Sec. II. In addition, the Nornir frameworks
may be used to manage also unstructured applications. The
manager follows the same steps outlined for the management
of the structured, FastFlow applications mentioned above.
However, sensors may be used only to figure out general,
application wide measures, as the patterns used to exploit
parallelism within the application are not known. Furthermore,
only general purpose, application wide actuators may be used
for the very same reason (i.e. it would not be possible to
dynamically change the number of threads used). This means
that overall the efficiency of the Nornir autonomic manager
may be sensibly decreased with respect to efficiency achieved
while taking care of structured parallel applications.

V. COMPARISON AND DISCUSSION

The three experiences discussed in the previous sections
may be overall summarized and compared as follows:

Strategies
Optimize service time through
dynamic parallelism degree

adaption

Perform known refactorings of concurrent activity
graphs, change implementaiton mechanisms, all upon

user/programmer specific request

Heuristics to identify perfor-
mance/power consumption tradeoff,

exploiting from monitoring info

Systems targeted COW/NOW/GRID Shared memory multi/many core
(with accelerators)

Shared memory multi/many core (with
accelerators)

Project
CoreGRID and GRIDcomp

EU funded FP6 projects
(late ’00s)

UNIPI/UNITO project, adopted in ParaPhrase,
REPARA and RePhrase EU funded projects

(FP7 and H2020)
& PhD thesis, early ’10s → late ’10s

UNIPI project & PhD thesis,
late ’10s

Autonomic User centric AutonomicControl

GCM FastFlow Nornir

Yes No (specific code needed) YesUser SLA

Single: Performance
(Service time)

Single: Performance
(service time or latency)

Multiple:
Power + PerformanceNF Concerns

Fig. 3. Summary of features of the three examples discussed

a) GCM Behavioural skeletons: BS represent some how
the initial step in autonomic management of non functional
features in structured parallel application. They build on
previous experiences where autonomic management was al-
ready used in more limited ways, such as the Muskel Java
based framework [10] using autonomic managers to get rid
of failures in COW/NOW execution of structured parallel
applications, or ASSIST [6] that also used a kind of autonomic
managers to adapt dynamically parallelism degree.

b) FastFlow: FastFlow mechanisms provide elementary
mechanisms that programmers of parallel applications may use
to implement ad-hoc autonomic managers, possibly embedded
in the system code providing high level, autonomic parallel
design patterns to the application programmers.

c) Nornir: Nornir introduces synergic management mul-
tiple concerns building on previous experiences from the group
that considered the possibility to implement strategies to deal
with multiple concerns, possibly pushing in different directions
the non functional parameters considered when optimizing
parallel execution behaviour [3].

Overall, the three experiences reported in this paper con-
tributed to show that more and more decisions affecting the
efficiency of a parallel computation may be taken when the
parallel structure of the application is completely exposed
to the parallel framework implementation tools. Behavioural
skeletons demonstrated the feasibility of the concept in a
distributed environment. Despite the fact they where only
developed to take care of service time of a structured par-
allel application, the research on BS opened perspectives on
suitable ways to manage multiple non functional concerns
that later on was actually implemented in Nornir. All the
mechanisms provided in FastFlow to support user directed
autonomic management are inspired by previous work on auto-
nomic managers in structured parallel computations, including
Behavioural skeletons.

VI. AUTONOMIC MANAGERS IN PERSPECTIVE

The three examples discussed in the previous Sections show
different aspects relative to autonomic management of non
functional features in parallel/distributed computations (see
Fig. 3): single or multiple non functional concern manage-
ment, complete autonomic managers vs. set of mechanisms
supporting ad hoc manager design, different techniques to
implement manager control programs. The common factor
of all the mentioned frameworks and tools is that they work
and are that efficient because they are managing applications
whose parallel structure is known, such as those programmed
using skeleton/pattern based structured parallel programming
frameworks. We hope this important fact may be recognized
and exploited also in more traditional, state-of-the-art parallel
programming frameworks.

Following an approach similar to the ones adopted in Nornir
or in Behavioural skeletons, it would be relatively simple to
add some kind of autonomic management of performance
(time) and power consumption in application written using
Microsoft Parallel Pattern Library or Intel TBB, as those
frameworks already support programming of parallel appli-
cations through usage of properly nested patterns.

Similarly, some of the techniques discussed in the previous
Sections may be applied to those patterns included in parallel
programming frameworks that per se do not support structured
parallel programming. OpenMP is one of such frameworks.
The only pattern(s) supported is the parallel for, which in turn
can be used to model map, reduce and map-reduce patterns.
Some of the different schedule parameters that can be
indicated in a #pragma omp for clause in fact already try
to do something to optimize task (i.e. iteration) scheduling
on available thread from the OpenMP thread pool (e.g. the
dynamic clause). In a sense, picking up one of the available
schedule clause parameters corresponds to the request of a
specific contract in terms of parallel for performance by
the application programmer. A similar approach could be

implemented in other frameworks providing similar parallel
loop constructs, such as Microsoft TPL or Intel TBB.

Moreover, in some cases more complex policies could be
programmed, for example by using the OMPT tracing li-
brary [13] to intercept and monitor the main OpenMP routines.
For example, it could be possible to monitor each parallel
for iteration by collecting information through proper sensors
(reporting average time spent computing iterations, load of the
different computing resources, etc) and by applying decisions
with appropriate actuators (adding/removing threads to the
parallel for execution, or varying other thread features, such as
thread pinning, core frequency and others). In addition to that,
in task-based programming environments, tasks are usually ex-
ecuted by a pool of threads, which could be dynamically added
or removed from the pool by using mechanisms and techniques
similar to those provided by FastFlow and Nornir. The thread
number to be used to execute a specific parallel section could
be selected by using a task_scheduler_init in Intel
TBB or by calling a ThreadPool.SetMaxThreads in
Microsoft TPL.

Finally, a concept somehow related to autonomic computing
is that of “auto tuning”, which can be applied by frameworks
and library to optimize execution by selecting a close to
optimal set of running parameters once the target architecture
or to the software configuration of the target machine are
known. As a notable example is that of linear algebra libraries
that implement auto tuning taking into account hardware
features such as cache sizes or ALU/SIMD sizes of target
architectures [5].

VII. CONCLUSIONS

We outlined different experiences contributed by our re-
search group that introduced different autonomic management
features in structured parallel programming frameworks based
on the algorithmic skeleton and parallel design pattern con-
cepts. We argued that the effectiveness of the different auto-
nomic management features is fundamentally due to the fact
the exact parallel structure of the applications is completely
exposed to the tool-chain supporting application execution. We
finally briefly discussed how the techniques experimented in
the structured parallel programming frameworks scenario may
be actually and, probably, seamlessly migrated to mainstream,
state-of-the-art parallel programming framework.

ACKNOWLEDGMENTS This work has been partially sup-
ported by Univ. of Pisa PRA 2018 66 DECLware: Declarative
methodologies for designing and deploying applications

REFERENCES

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi,
Domenico Laforenza, Nicola Tonellotto, and Peter Kilpatrick. Be-
havioural skeletons for component autonomic management on grids.
In Making Grids Work: Proceedings of the CoreGRID Workshop on
Programming Models Grid and P2P System Architecture Grid Systems,
Tools and Environments, 12-13 June 2007, Heraklion, Crete, Greece,
pages 3–15, 2007.

[2] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi,
Peter Kilpatrick, Patrizio Dazzi, Domenico Laforenza, and Nicola Tonel-
lotto. Behavioural skeletons in GCM: autonomic management of grid
components. In 16th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP 2008), 13-15 February
2008, Toulouse, France, pages 54–63. IEEE Computer Society, 2008.

[3] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic
management of non-functional concerns in distributed & parallel ap-
plication programming. In 23rd IEEE Int’l Symp. on Parallel and
Distributed Processing, IPDPS 2009, Rome, Italy, pages 1–12, 2009.

[4] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik
Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view
of the parallel computing landscape. Commun. ACM, 52(10):56–67,
October 2009.

[5] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,
B. Norris, and R. Vuduc. Autotuning in high-performance computing
applications. Proceedings of the IEEE, 106(11):2068–2083, Nov 2018.

[6] Carlo Bertolli, Daniele Buono, Gabriele Mencagli, and Marco Van-
neschi. Expressing adaptivity and context awareness in the ASSISTANT
programming model. In Autonomic Computing and Communications
Systems, Third Int’l ICST Conf., Autonomics 2009, Limassol, Cyprus,
September 9-11, 2009, pages 32–47, 2009.

[7] Philipp Ciechanowicz and Herbert Kuchen. Enhancing Muesli’s Data
Parallel Skeletons for Multi-core Computer Architectures. In 12th IEEE
International Conference on High Performance Computing and Com-
munications, HPCC 2010, 1-3 September 2010, Melbourne, Australia,
pages 108–113, 2010.

[8] Murray Cole. Bringing skeletons out of the closet: A pragmatic man-
ifesto for skeletal parallel programming. Parallel Comput., 30(3):389–
406, March 2004.

[9] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard
api for shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–
55, January 1998.

[10] Marco Danelutto. Qos in parallel programming through application
managers. In 13th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing (PDP 2005), 6-11 February 2005, Lugano,
Switzerland, pages 282–289, 2005.

[11] Daniele De Sensi, Tiziano De Matteis, and Marco Danelutto. Sim-
plifying self-adaptive and power-aware computing with nornir. Future
Generation Computer Systems, pages –, 2018.

[12] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. A recon-
figuration algorithm for power-aware parallel applications. ACM Trans.
on Architecture and Code Optimization, 13(4):43:1–43:25, dec 2016.

[13] Alexandre E. Eichenberger, John M. Mellor-Crummey, Martin Schulz,
Michael Wong, Nawal Copty, Robert Dietrich, Xu Liu, Eugene Loh,
and Daniel Lorenz. OMPT: an openmp tools application programming
interface for performance analysis. In OpenMP in the Era of Low
Power Devices and Accelerators - 9th International Workshop on
OpenMP, IWOMP 2013, Canberra, ACT, Australia, September 16-18,
2013. Proceedings, pages 171–185, 2013.

[14] August Ernstsson, Lu Li, and Christoph Kessler. Skepu 2: Flexible
and type-safe skeleton programming for heterogeneous parallel systems.
International Journal of Parallel Programming, 46(1):62–80, Feb 2018.

[15] Noman Javed and Frédéric Loulergue. A formal programming model
of orléans skeleton library. In Proceedings of the 11th International
Conference on Parallel Computing Technologies, PaCT’11, pages 40–
52, Berlin, Heidelberg, 2011. Springer-Verlag.

[16] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency
scaling: The laws of diminishing returns. In Proceedings of the 2010
International Conference on Power Aware Computing and Systems, Hot-
Power’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[17] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
Parallel programming with a pattern language *. International Journal
on Software Tools for Technology Transfer, 3(2):217–234, May 2001.

[18] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for
Parallel Programming. Addison-Wesley Professional, first edition, 2004.

[19] Chuck Pheatt. Intel® threading building blocks. J. Comput. Sci.
Coll., 23(4):298–298, April 2008.

[20] Parallel Pattern Library, 2019. https://docs.microsoft.com/en-us/cpp/
parallel/concrt/parallel-patterns-library-ppl?view=vs-2019.

[21] Marco Vanneschi. The programming model of assist, an environment
for parallel and distributed portable applications. Parallel Comput.,
28(12):1709–1732, December 2002.

