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Abstract. One of the key needs of an autonomic computing system
is the ability to monitor the application performance with minimal in-
trusiveness and performance overhead. Several solutions have been pro-
posed, differing in terms of effort required by the application program-
mers to add autonomic capabilities to their applications. In this work
we extend the Nornir autonomic framework, allowing it to transpar-
ently monitor OpenMP applications thanks to the novel OpenMP Tools
(OMPT) API. By using this interface, we are able to transparently
transfer performance monitoring information from the application to the
Nornir framework. This does not require any manual intervention by the
programmer, which can seamlessly control an already existing applica-
tion, enforcing any performance and/or power consumption requirement.
We evaluate our approach on some real applications from the PARSEC
and NAS benchmarks, showing that our solution introduces a negligible
performance overhead, while being able to correctly control applications’
performance and power consumption.

Keywords: Power-Aware Computing ·Autonomic Computing ·OpenMP
· Power Capping

1 Introduction

Adding autonomic capabilities to applications is an important feature of modern
computing systems. Indeed, being able to automatically tune the application ac-
cording to the user requirements would allow an optimal usage of the computing
resources, with a consequent reduction of their power consumption. Autonomic
capabilities are usually added to applications by having a separate entity (a
manager) which periodically monitors the application and decides the action to
take (e.g. reduce the resources allocated to the application) according to some
requirements specified by the user. Such requirements can be usually expressed
in terms of performance, power consumption, reliability, and others.

For performance monitoring purposes, interactions between the autonomic
manager and the application can be implemented in several ways. The sim-
plest solution would be to modify the application inserting some instrumentation
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calls, which would collect the performance of the application and communicate
this information to the autonomic manager, for example by using the Heartbeat
API [15] or the Nornir framework [9]. However, it is not always possible to
modify the source code of the application, and this additional effort could dis-
courage application programmers, limiting the adoption of such autonomic tools.
On the other hand, other solutions monitor application performances without
requiring any modification to the application source code. For example, this can
be implemented by modifying the application binary to add instrumentation
calls, either by using dynamic instrumentation tools like PIN [14] or by using
static istrumentation tools such as Maqao [6] or Dyninst [7]. Alternatively, ap-
plication performance may be inferred by analyzing performance counters (such
as the number of instructions executed per time unit). However, by using such
approach it would be difficult for the user to relate this performance informa-
tion to the actual application performance (for example in terms of number of
stream elements processed per time unit). Eventually, a last class of solutions
modifies neither the application source code nor its binary, while still being able
to monitor real application performance. These solutions can be used on appli-
cations implemented with specific programming frameworks, and interact with
the runtime used by the application [10, 18], for example by intercepting some
runtime calls.

In this work we will focus on this last class of solutions, by extending the
Nornir autonomic framework, allowing it to transparently interact with OpenMP
applications. We will analyze our solution on different applications from the
PARSEC [8] and NAS [5] benchmarks, showing that our implementation intro-
duces a negligible performance overhead, while at the same time allowing the
user to set arbitrary performance and power consumption requirements on such
applications.

The rest of this paper is structured as follows. Section 2 briefly describes some
existing works addressing autonomicity in OpenMP applications. In Section 3
we provide some background about the Nornir framework and the OMPT API,
which will be used to intercept OpenMP calls. In Section 4 we will describe the
design and implementation of our solution and in Section 5 we will perform the
experimental evaluation. Eventually, Section 6 concludes this work and outlines
possible future developments.

2 Related Work

Different works deal with autonomic solutions for controlling performance and
power consumption of applications, according to user requirements. In this sec-
tion we will focus on the existing works targeting OpenMP applications.

Li et al. [13] target hybrid MPI/OpenMP applications, proposing an algo-
rithm which applies Dynamic Voltage and Frequency Scaling (DVFS) and Dy-
namic Concurrency Throttling (DCT) to improve the energy efficiency of such
applications. However, manual instrumentation by the programmer is required,
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and no explicit performance and/or power consumption requirements can be
specified by the user.

Other works [3, 17] propose extensions to the OpenMP annotations, to ex-
press explicit requirements in terms of power consumption, energy, or perfor-
mance. Although such approaches are more expressive than the one presented
in this work, they require to modify and recompile the application source code.

Wang et al. [18] apply clock modulation and DCT to OpenMP applications
to reduce their energy consumption. On the other hand, in our work we interface
OpenMP applications to the Nornir framework, allowing to enforce arbitrary
constraints in terms of power consumption and performance, by using not only
DCT and clock modulation but also DVFS and other mechanisms provided by
the Nornir framework. Moreover, whereas in the work by Want et al. [18] the
selection of the optimal concurrency level is done through a complete exploration
of the search space, by using Nornir different algorithms can be applied to
avoid such full exploration, thus reducing the time required to find the optimal
resources configuration.

In addition to the aforementioned limitations, all the described approaches
are implemented ad-hoc and do not rely on any general purpose autonomic
framework. On the contrary, our approach relies on Nornir, extending the perks
of the framework (e.g. the possibility to easily implement new autonomic algo-
rithm) to any OpenMP application.

3 Background

In this section we provide some background about the Nornir framework and
the OMPT API.

3.1 Nornir

Nornir1 [9] is a framework for power-aware computing, providing the possi-
bility to control performance and power consumption of applications running
on shared memory multicore machines. Nornir provides a set of algorithms to
control performance and power consumption of applications, in order to enforce
requirements specified by the user. Internally, Nornir abstracts many low-level
aspects related to interaction with both the underlying hardware and the ap-
plication, and it can be easily customized by adding new control algorithms.
Nornir acts according to the Monitor, Analyze, Plan, Execute (MAPE) loop.
At each iteration of the MAPE loop (also known as control step), the application
performance and power consumption is monitored, then appropriate decisions
based on these observations are taken, and eventually these decisions are applied
in the Execute phase. The MAPE loop is executed by a manager entity, which
is executed as a separate thread/process.

1 https://github.com/DanieleDeSensi/nornir
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To perform the Monitor and Execute phases, the Nornir manager needs
to interact both with the machine it is running on, but also with the applica-
tion it is controlling. To interact with the underlying hardware, Nornir relies
on the Mammut library [11], which abstracts in an object-oriented fashion the
available hardware control knobs and monitoring interfaces. This allows an easy
exploitation of many features required in power-aware autonomic computing,
such as scaling the clock frequency of the cores, monitoring the power consump-
tion, dynamically turning off CPUs, etc. On the other hand, to interact with the
application, multiple possibilities are provided by Nornir:

Black-box With this kind of interaction, the source code of the controlled ap-
plication does not need to be modified, and Nornir will monitor applica-
tion performance by using hardware performance counters (e.g. number of
instructions executed per time unit).

Instrumentation If users are willing to modify the application to be controlled,
they could insert some instrumentation calls in the source code of the ap-
plication, to track application progress (e.g., in streaming applications, the
number of stream elements processed per time unit). Although this is more
intrusive than the Black-box approach, in this case the user can express the
performance requirements in a more meaningful way, rather than expressing
them in terms of CPU instructions.

Runtime In some cases, Nornir can directly interact with the runtime of the
application, not requiring any modification to the application code but at
the same time being able to collect high-level performance metrics, such as
number of stream elements processed per time unit. Moreover, in this case
it is also possible to exploit more efficient actuators, such as the concurrency
throttling knob, which allows Nornir to dynamically change the number of
threads used by the application. Currently, Nornir provides this possibility
only for applications implemented using the FastFlow framework [2]. In this
work, we will extend this possibility also to applications using OpenMP.

Nornir API Lastly, Nornir also provides a programming API to implement
parallel applications, relying on a runtime based on Fastflow [2]. This ap-
proach allows a fine-grained control on the application, but it is also the
most intrusive one, since it requires the user to rewrite the application by
using a different programming framework.

Nornir limitations mostly depend on the limitation of the algorithms used
for the Analyze and Plan phases. For example, one common assumption made
by these algorithms is that the application can reasonably balance the workload
among the threads. If this is not the case, this could affect the accuracy of these
algorithms.

3.2 OMPT

The OpenMP Tools API (OMPT) [12, 4] is an Application Programming Inter-
face for first-party performance tools. By using OMPT, it is possible to track
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different events during the lifetime of an OpenMP application, such as tasks
creation and destruction, OpenMP initialization, synchronizations, and others.
To intercept these events, the OMPT user must define callbacks which will be
invoked every time one of these events occurs. Then, these callbacks can be
either statically linked to the application when it is compiled, or they can be dy-
namically loaded by specifying the dynamic library containing such user-defined
callbacks in the LD PRELOAD environment variable. By tracking these events, it
would be possible to monitor the application progress and performance (e.g., in
terms of number of OpenMP tasks executed per time unit), which is what is
needed by Nornir to monitor an application and to apply autonomic decisions.

4 Design and Implementation

In this section we will describe how Nornir has been extended to transparently
monitor OpenMP applications. First, because the OMPT API is not yet pro-
vided by most OpenMP implementations, we rely on an experimental LLVM-
based implementation [1]. To interface the Nornir manager to the OpenMP
application, we first intercept the initialization of the OpenMP application by
using the OMPT API. When OpenMP is initialized, the manager is created and
started as an external process. The manager will execute the MAPE loop and, at
each iteration of the MAPE loop, in the monitor phase it will collect the appli-
cation performance by sending a request to the application process. Every time a
task is created, the event will be intercepted through OMPT. If a request by the
Nornir manager was present, then the number of tasks executed per time unit
will be communicated to the manager, otherwise the number of executed tasks
will be stored locally. This interaction between the application and the manager
is implemented by using the Riff library, which is a small library (provided
by Nornir) for monitoring application performance, which was already used
for Instrumentation interactions (see Section 3.1). This exchange between the
OpenMP application and the Nornir manager is depicted in Figure 1.

Fig. 1: Interaction between the OpenMP application and the Nornir manager.

However, this approach would not work for applications composed only of a
single OpenMP parallel loop. In this case, the OpenMP runtime would create
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Listing 1.1: Nornir configuration file

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<nornirParameters>
<requi rements>

<throughput>100</ throughput>
</ requi rements>
</ nornirParameters>

a number of tasks equal to the number of cores available on the machine, and
then each task will execute different chunks of loop iterations. Since tasks are
created only once, we would not be able to track application progress. To address
this problem, we also need to track the events associated to the scheduling of
chunks of loop iterations. However, this type of callbacks is not defined by the
OMPT API specification. For this reason, we extended the LLVM-based OMPT
implementation to also track the scheduling of chunks of iterations in OpenMP
parallel loops. This modified OpenMP implementation has been released as open
source [16] and is used by Nornir by default. It is worth remarking that if the
application is composed of a single parallel loop and if static scheduling is used,
then we would have the same problem, since only one chunk per thread will be
generated, and we will not be able to track application progress.

To impose specific performance and power consumption requirements, the
user needs first to build an XML file containing, among others, the minimum
performance required (in terms of tasks or loop iterations processed per second)
and the maximum allowed power consumption. The path of this file must be then
specified in the NORNIR OMP PARAMETERS environment variable. For example, if
the user wants his/her OpenMP application to execute 100 loop iterations per
second, the XML file like the one in Listing 1.1 should be provided.

Then, the user needs to specify the path of the Nornir dynamic library and
of the modified OpenMP implementation in the LD PRELOAD environment vari-
able. This process is wrapped in a script which is provided by Nornir and which
sets these paths in a proper way according to the way Nornir was installed. For
example, to run the foo OpenMP application enforcing the requirements spec-
ified in the config.xml configuration file, it is sufficient to run the command:
nornir openmp foo config.xml.

It is worth mentioning that the same approach could also be adopted for
other frameworks (e.g. Intel TBB). To do that, we should locate the points in
the runtime code where we could track application progress (e.g. where tasks
are created), and then insert instrumentation calls in the same way we did for
OpenMP. This could be either done by using similar profiling API, or by actually
modifying the runtime source code.
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5 Experiments

In this section we first evaluate the overhead introduced by Nornir (which
also includes the overhead for intercepting OpenMP events). Then, we will show
how by applying our approach it is possible to transparently enforce arbitrary
performance and power consumption requirements on OpenMP applications.
For our analysis we selected the blackscholes and bodytrack benchmarks from
the PARSEC benchmark suite [8] and the bt and cg applications from the NAS
benchmark [5]. We used the native input for the PARSEC applications, the
class B input for bt and the class C input for cg. All the experiments have
been executed on a Dual-socket NUMA machine with two Intel Xeon E5-2695
Ivy Bridge CPUs running at 2.40GHz featuring 24 hyper-threaded cores (12 per
socket). Each hyper-threaded core has 32KB private L1, 256KB private L2 and
30MB of L3 shared with the cores on the same socket. The machine has 64GB of
DDR3 RAM. We did not use the hyper-threading, and the applications used at
most 24 cores in our experiments. The software environment consists of Linux
3.14.49 x86 64 shipped with CentOS 7.1 and gcc version 4.8.5.

Every experiment has been executed a number of times, until the 95% confi-
dence interval from the mean was lower than the 5% of the mean, and we report
the entire distribution of results as a boxplot (e.g. see Figure 2). In a boxplot,
the upper and lower borders of the box represent the third (Q3) and first (Q1)
quartile respectively. Being IQR the interquartile range (i.e. Q3 - Q1), the up-
per and lower whiskers represent the largest sample lower than Q3 + 1.5 · IQR
and the smallest sample greater than Q1 − 1.5 · IQR. All the points outside
these whiskers are considered to be outliers and are plotted individually. The
line inside the box represents the median and the small diamond represents the
mean.

5.1 Overhead

To measure the overhead introduced by Nornir and OMPT, we first executed
the applications in their default configuration (denoted as Default), without any
kind of instrumentation and without enabling OMPT. Then, we use OMPT but
we do not communicate any data to Nornir (denoted as OMPT ). Eventually,
we attach Nornir to the application, but we do not change its configuration.
In this way, we can separately measure the overhead introduced by OMPT to
intercept OpenMP calls and the overhead introduced by Nornir plus OMPT,
including the overhead to communicate performance information between the
application and the Nornir manager. We report the results of this analysis in
Figure 2. We report on the x-axis the different applications, and on the y-axis the
application throughput (in terms of tasks/iterations executed per time unit). The
throughput is normalized with respect to the median throughout of the default
execution (the higher the better), so that values lower than one represent a lower
throughput with respect to the default execution.

As we can see from both the medians and the means, while for blackscholes
and bodytrack there are no relevant differences, for bt and cg we have some
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Fig. 2: Throughput comparison between the default execution and the execution
where Nornir and OMPT are used. Throughput is normalized with respect to
the default execution. The higher the better.

performance degradation. For bt, the performance degradation is less then 10%,
which however seems to be caused by OMPT rather than by the communication
of the performance information to Nornir. On the contrary, for cg we have an
overhead lower than 5%, which the data show to be caused by Nornir.

5.2 Throughput and Power Consumption Requirements

We now analyze the ability of Nornir to set explicit performance and power
consumption requirements, by using the performance information extracted with
OMPT. To enforce performance and power consumption requirements we used
one of the several algorithms provided by Nornir (ANALYTICAL FULL). This
algorithm tunes the number of cores used by the application and their clock fre-
quency, searching for a configuration which satisfies the requirements expressed
by the user. To avoid biases due to the selection of a specific requirement, we
perform our test for different requirements. For example, being T the application
throughput, we set as throughput requirements 0.2 · T , 0.4 · T , . . . , T . A similar
approach has been adopted for power consumption requirements2.

We report in Figure 3 the results of this evaluation for performance require-
ments. We show on the x-axis the performance requirements expressed as a
percentage of the maximum performance. On the y-axis we show the obtained
performance normalized with respect to the requirement. Namely, 1.0 represents
the requirement and values higher or equal than one mean that Nornir was able
to satisfy the requirement. As shown in the plot, we were able to run the appli-
cation so that its throughput is higher or equal than that required by the user.

2 For power consumption requirements, we do not consider the 0.2 requirement since it
can never be enforced, not even by using only one core at minimum clock frequency.
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Fig. 3: Performance of the analyzed applications under different performance
requirements. On the x-axis the performance requirements expressed as a per-
centage of the maximum performance. On the y-axis the obtained performance
normalized with respect to the requirement (i.e. values higher than one mean
that Nornir was able to satisfy the requirement).

In almost all the cases (with the exception of bt and cg on the 40% requirement),
the achieved throughput was at most 20% higher than the user requirement.

Similarly, in Figure 4 we report the results of the evaluation for power con-
sumption requirements. We show on the x-axis the power consumption require-
ments expressed as a percentage of the maximum power consumption. On the
y-axis we report the obtained power consumption normalized with respect to the
requirement. Namely, 1.0 represents the requirement and values lower or equal
than one mean that Nornir was able to satisfy the power consumption require-
ment. Also in this case we were able to correctly enforce the user requirements,
having a power consumption which is always lower or equal to that specified by
the user. In all the cases except one (blackscholes for the 100% requirement),
Nornir was able to find a configuration characterized by a power consumption
at most 5% lower than that required by the user.

6 Conclusions and Future Work

When designing autonomic solutions, a relevant design decision is related to
the way in which the application performance is monitored. Several solutions
are possible, each requiring a different effort to the application programmer. In
this work we analyze the possibility to intercept different events in OpenMP
applications to track their performance. Such solution would not require any
effort to the application programmer.

To implement this process we relied on the OMPT API, which allowed us
to track OpenMP applications and to interface them to the Nornir framework,
allowing us to transparently set arbitrary performance and power consumption
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Fig. 4: Power consumption of the analyzed applications under different power
consumption requirements. On the x-axis the power consumption requirements
expressed as a percentage of the maximum power consumption. On the y-axis
the obtained power consumption normalized with respect to the requirement (i.e.
values lower than one mean that Nornir was able to satisfy the requirement).

requirements on existing applications. To correctly monitor applications com-
posed of a single parallel loop, we modified the OMPT backend to also track the
scheduling of chunks of iterations in parallel loops. Moreover, all the developed
code has been integrated into Nornir, which is a publicly available open-source
framework. Eventually, we showed that the introduced performance overhead is
negligible and that we can correctly enforce arbitrary requirements.

In the future, we would like to extend the interaction with OpenMP also
to the execute phase of the MAPE loop, by dynamically changing the number
of threads used by the OpenMP runtime. Moreover, we would like to monitor
the performance at a finer granularity, for example by intercepting individual
iterations of the parallel loop rather than the scheduling of chunks of iterations.
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