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ABSTRACT
This paper studies k-plexes, a well known pseudo-clique model
for network communities. In a k-plex, each node can miss at most
k − 1 links. Our goal is to detect large communities in today’s real-
world graphs which can have hundreds of millions of edges. While
many have tried, this task has been elusive so far due to its compu-
tationally challenging nature: k-plexes and other pseudo-cliques
are harder to find and more numerous than cliques, a well known
hard problem. We present d2k, which is the first algorithm able
to find large k-plexes of very large graphs in just a few minutes.
The good performance of our algorithm follows from a combina-
tion of graph-theoretical concepts, careful algorithm engineering
and a high-performance implementation. In particular, we exploit
the low degeneracy of real-world graphs, and the fact that large
enough k-plexes have diameter 2. We validate a sequential and a
parallel/distributed implementation of d2k on real graphs with up
to half a billion edges.
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1 INTRODUCTION
Finding communities and clusters is one of the most fundamental
tasks when analyzing any form of data, albeit computationally
demanding. In networks, communities are generally associated with
densely interconnected subgraphs [13, 21, 23]: a clique represents
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the ideal situation, where nodes are pairwise linked, and is the
earliest and arguablymost studied communitymodel. Manymodern
approaches exist to find cliques in networks, based on the seminal
paper by Bron and Kerbosch [5]. Great effort has been dedicated to
optimize various goals, such as worst-case running time on general
graphs [20] and sparse, real-world, graphs [12], usage of main
memory [7], and running time as a function of the output [10].

In real networks, where data can be noisy or faulty, large and
closely linked communities hardly appear as ideal cliques, so other
forms of subgraphs are sought for. A natural answer to this question
is a relaxed notion of pseudo-clique, such as k-core, k-plex, n-clan,
n-club, s-clique, dense subgraph [13, 17, 19, 23], but there is another
side to this coin: the number of pseudo-cliques grows exponentially,
at an even faster pace than that of cliques; moreover, the cost of
detecting the former ones is higher due to their more complex
structure. These issues are well known and investigated in the
literature.

In this paper, we focus on k-plexes, a widely used model of
pseudo-cliques [3, 9, 19, 24, 25]: the requirement of each node being
linked to all others is loosened to each node missing no more than
k − 1 links or, equivalently, missing k links including the one to
itself (absence of self-loops is assumed). Some examples are shown
in Figure 1. A clique is a 1-plex according to this definition, and
as k grows, the number of k-plexes increases exponentially with
respect to that of cliques: Figure 2 testifies how striking this is even
on small networks (see Table 1 for reference). To make k-plexes
effective models of communities, we want to focus on interesting
configurations that are larger and more densely connected by fulfill-
ing three constraints (trivially satisfied by cliques when k = 1): the
first two appeared in the literature, and the last one is introduced
and motivated here.

• The k-plexes should be connected, otherwise they cannot be
regarded as one community.

• Their size should be large, so as to involve as many entities as
possible. In particular, they should be maximal under inclu-
sion, namely, adding one more node violates the constraints
given here.

• Their diameter (i.e. maximum pairwise distance among their
nodes) should be small, as a node cannot go too far in reach-
ing the nodes in its community.

In particular, we require that the diameter should be at most 2 for
the following reasons: on one hand, it is equivalent to saying that
every two nodes in the community are directly linked or at least
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Figure 1: From left to right, top: a 1-, 2-, 3-, 4-plex.
Bottom: a 4-plex and a 3-plex with diameter larger than 2.

share a common neighbor. Indeed, any k-plex with diameter greater
than 2 has nodes that are not linked and do not share common
neighbors: it could be argued that such nodes should not belong
to the same community (see the examples in Figure 1). On the
other hand, if the diameter is less than 2, we obtain exactly a clique.
Asking the diameter to be at most 2 is the right balance between
these extremes. Furthermore, this does not miss any significant
communities (the meaning of significance is discussed in Section 6)
in comparison with standard k-plexes. Specifically, all connected 1-
plexes and 2-plexes have diameter at most 2, and the only connected
3-plex of diameter more than 2 is the induced path of 4 nodes, which
can hardly be considered a community. For larger values (k ≥ 4), we
still guarantee to find at least all k-plexes with 2k −1 or more nodes,
as it is well known that they have diameter 2 (e.g., see Lemma 5.1
in [9]). As k is a small constant in practice, this guarantees to hit
all large (or even medium-sized) communities.

From a computational point of view, the fact that the diameter is
at most 2 gives us a powerful handle to efficiently pull out the most
interesting k-plexes from massive networks. A practical example
can be seen in Section 2, where we briefly describe the biggest
communities in some large real networks, whose detection only
took few minutes in our case.

Our main contribution is the algorithm d2k (for diameter-2 k-
plexes), which shows that significant k-plexes can be efficiently
discovered in large networks. d2k features a recursive backtracking
structure, and a decomposition which is particularly suitable for
parallelization and distribution. Furthermore, we introduce some
novel pruning techniques for the problem, based on simple yet
effective insights on both the problem and the structure of real data,
which dramatically reduce the search space and consequently the
computation time.

While computation of cliques on large and sparse real-world
networks is feasible with ad-hoc algorithms[10, 12], computing
k-plexes on such networks has been so far a task out of reach: [9]
finds the largest 2-plex on a graph with 1.8 million edges, and [24]
scales up to a graph with 22 million edges (see pokec in Table 1),
but only processes a subgraph made by 10 of its nodes and the
surrounding areas.

While these results greatly improve upon previous approaches
(e.g., [3, 25]), it is not yet enough for today’s data: large real world
graphs can have hundreds of millions of nodes, or even billions.
We argue that our approach can give a satisfying solution to the
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Figure 2: Number of k-plexes for increasing values of k .

sought-after problem of finding pseudo-cliques in very large graphs.
This is motivated in Section 5, where we show how our approach
can process real world graphs with hundreds of millions of nodes
in very reasonable times. Moreover, further discussion with related
work is given in Section 6.

2 DATA ANALYSIS
For the sake of presentation, we computed the largest 4-plexes on
three networks, whose content is briefly described below. Although
performing data analysis is out of the scope of this paper, we believe
that the following toy examples can help to grasp its flavour.

Pokec. This dataset is a snapshot of the most popular Slovakian
social network. The largest 4-plex is a group of 32 users, aged
between 15 and 20 years. Remarkably, the community is mainly
Czech, with 81% of the users from Czech Republic (whose language,
should be remarked, is closely related to Slovak), and is 94% female.
Furthermore, data suggests it may have been a pre-existing group
of friends who decided to join together, as 97% registered within 5
months of each other (January to May 2012). The users also seem
to have similar music interests, with 56% selecting Slovak actress
and singer Lucia Molnárová as favorite singer.

it-2004. This is a 2004 crawl of the Italian web (.it domain)
made by [4]. The largest 4-plex consists in a collection of 3210
pages from the website www.cuoko.it. The reason behind such a
structure is not apparent from the data, probably an attempt for
search engine optimization or for increasing user activity.

uk-2005. This is a 2005 crawl of the British web (.co.uk domain,
but including bbc .com) again made by [4]. The largest 4-plex con-
sists in a collection of 587 pages from a series of similarly named
housing websites, plus the two domains gibbinsrichards.co.uk and
doorkeys.co.uk. The following is an excerpt.

gibbinsrichards.co.uk homes-for-sale-oxford.co.uk
doorkeys.co.uk homes-for-sale-paisley.co.uk
. . . . . .
estate-agent-oldham.co.uk house-for-sale-paisley.co.uk
estate-agent-oxbridge.co.uk house-for-sale-perth.co.uk
. . . . . .
home-for-sale-oxbridge.co.uk houses-for-sale-perth.co.uk
home-for-sale-oxford.co.uk houses-for-sale-peterborough.co.uk
. . . . . .
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Among these pages, only gibbinsrichards.co.uk is currently ac-
tive and indeed corresponds to a housing company. While a whois
lookup does not reveal any information on the similarly named
websites, one may conjecture that they were bogus websites set up
for the benefit of the first two domains, e.g., for improving their
rank scores on well known search engines.

3 ALGORITHM
In this section we show our proposed algorithm for listing maximal
k-plexes of diameter at most 2 for a given integer k ≥ 1, on a
graph G = (V ,E). Each listed solution is a set K ⊆ V , such that the
resulting induced subgraphG[K] has the following properties: each
node has degree at least |K | − k (i.e., it is a k-plex), it is connected,
and the maximum pairwise distance among its nodes is ≤ 2. All
solutions are also maximal under inclusion, i.e., there is no K ′ ⊃ K
satisfying the latter properties. Moreover, an optional threshold
q > 0 can be given, so that |K | ≥ q is guaranteed in order to discover
large k-plexes.

First we will explain the core structure of our approach, then
some crucial algorithm engineering and optimization which allow
us to reduce the search space.

3.1 Main structure
We assume the nodes to be ordered arbitrarily as v1, . . . ,vn . We
say that vi is smaller than vj if it comes earlier in the ordering, i.e.,
i < j. For a node vi , let N (vi ) be the set of nodes adjacent to vi
(its neighbors), and N>(vi ) be the set of forward neighbors of vi ,
i.e., N (vi ) ∩ {vi+1, . . . ,vn }. Furthermore, let N 2

>(vi ) be the set of
forward cousins of vi , that are neighbors of a node in N>(vi ) which
are also larger than vi (and not already forward neighbors of vi ).

We decompose the original problem into enumerating, for each
node v , all k-plexes whose smallest node is v itself. To do so, we
will exploit the following key property:

Observation 3.1. When vi is the smallest node in a diameter two
k-plex, all other nodes of the k-plex must be either forward neighbors
or forward cousins of vi .

This allows us to look for solutions with smallest node v in the
subgraph containing just v , its forward neighbors, and its forward
cousins, which we call block(v). To improve the performance of
our approach, we want block(v) to be as small as possible, as will
be discussed later.

In order to process each block(v), we use a binary partition
scheme similar to the Bron-Kerbosch clique enumeration algo-
rithm [5]. We want to recursively solve the following subproblem.

Problem 1. Given a connected k-plex K and a set of nodes excl,
find all maximal connected k-plexes K ′ such that K ⊆ K ′ and K ′ ∩
excl = �.

Solving Problem 1 recursively is easy: for a given v < K ∪ excl
such that K ∪ {v} is a connected k-plex, we split the problem into
finding all solutions containing v by adding v to K , and all those
who do not by adding it to excl instead, using two nested recursive
calls. For efficiency, for each k-plex K we keep a set cand of all
v that should be tested, and directly generate all nested calls that
would add one node of cand to K and the previously considered
one to excl as children of the same recursive call.

Whenever cand is empty, it is easy to see that K is a maximal
connected k-plex if and only if excl is also empty, since any node
left in excl may be added to K to make a larger k-plex, and if both
sets are empty no node can be used to enlarge K .

Finally, for anyk-plexmaximal in block(v), our algorithm checks
whether it is maximal inG , in which case it is output, or it is a subset
of a larger k-plex whose smallest node is some w < v , in which
case it is discarded as it is not a solution.

The resulting algorithm is as follows:

Algorithm 1: Structure of our algorithm
Input :A graph G = (V (G),E(G)), an integer k
Output :All diameter 2 k-plexes of G

1 foreach v in an ordering {v1, . . . ,vn } of V (G) do
2 H = (V (H ),E(H )) ← block(v)
3 enum(H , {v},N (v) ∩V (H ),�)
4 Function enum(H ,K , cand, excl)
5 if cand ∪ excl = � /*K is maximal in H*/ then
6 if K is maximal in G then
7 output K

8 foreach c ∈ cand do
9 cand′, excl′ ← update(H ,K ∪ {c}, excl)

10 enum(H ,K ∪ {c}, cand′, excl′)
11 cand ← cand \ {c}
12 excl ← excl ∪ {c}
13 Function update(H ,K , excl)
14 cand′ ← {v ∈ V (H ) \ (K ∪ excl) : K ∪ {v} is a connected

k-plex }
15 excl′ ← {v ∈ excl : K ∪ {v} is a connected k-plex }

For each child, cand and excl are updated using the function
update() to retain just the nodes x such that K ∪ {x} is still a
connected k-plex.

To speed up the update(), we can compute cand’ and excl’ by
difference from the current ones: the addition of c to K may only
shrink excl. As for cand, we may have to add some nodes which
became connected to K , namely, neighbors x of c which had no
neighbor in K . Whenever |K | ≥ k , however, our algorithm can skip
this check, as any such x would have at least k non-neighbors in K ,
meaning that K ∪ {x} ∪ {c} would not be a k-plex.

A strong point of this algorithm is the suitability for parallel
and distributed computation, since each block(v) can be processed
independently. Furthermore, we will now present how the compu-
tation on each block can be further optimized.

3.2 Degeneracy ordering
The first and most surprising cut is simply ordering V (G) in a
degeneracy ordering [12].

If we call ∆ the maximum degree of a node in G, note that
the number of nodes in block(v) is bounded by ∆2. However, a
degeneracy ordering minimizes the maximum number of forward
neighbors of a node in G: this number is called the degeneracy of
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the graph, d . Using such ordering reduces the size of block(v) from
∆2 to d · ∆

Extensive experimental evidence has shown the degeneracy to be
a small number on most real-world networks, even large ones [10–
12], and can be noticed in Table 1. The practical effect of this or-
dering is striking. Horizontal lines baseline and d in Figure 3 show
the maximum block sizes produced by our algorithm, using respec-
tively a random or a degeneracy node ordering: the latter ordering
produced blocks always less than half the size of the former, and up
to a factor 7. (Lines sp and sp+d will be covered later in Section 3.4)

3.3 Pivoting generalization
The Bron-Kerbosch algorithm for clique enumeration uses an ef-
fective technique called pivoting to cut useless branches from the
computational trees. This is based on the principle that “each max-
imal clique must contain either the node u or a non-neighbor of
u”. In this paper we present of a generalization of this principle,
applied to k-plexes:

Lemma 3.2 (k-plex pivoting). Let K be a k-plex, cand = {v <
K : K ∪ {v} is a k-plex }, and u a node in cand. Any maximal k-plex
containing K contains either u, a non-neighbor of u, or a neighbor v
of u such that v and u have a common non-neighbor in K .

Proof. Assume by contradiction that K ′ is a maximal k-plex
that violates the above constraint:u has at most k−1 non-neighbors
in K ′ since K ∪ {u} is a k-plex and K ′ \K is made by only neighbors
ofu. Furthermore, any non-neighborw ofu in K is a neighbor of all
nodes inK ′\K , thusw may not have more than k−1 non-neighbors
in K ′ as it did not in K . Thus K ′ ∪ {u} is a k-plex and K ′ is not
maximal, a contradiction. □

We say that this is a generalization of the pivoting for clique
enumeration as for k = 1 we obtain exactly the pivoting of the
Bron-Kerbosch algorithm. Furthermore, as for the Bron-Kerbosch
algorithm, the same applies if u is chosen in excl rather than cand.
The cut of the search space is in that, when considering K , we can
skip the recursive call for nodes which are both neighbors of u
and do not share any non-neighbors in K with u. In practice, this
translates to replacing Line 8 in Algorithm 1 with the following

foreach {c ∈ cand : c < N (u) or K \ (N (u) ∪ N (c)) , �} do
where u is the chosen pivot. In order to maximize the effective-

ness of this cut, we adopt the philosophy of Tomita et al. [20], and
pick at each step the u which maximizes the number of prevented
recursive calls.

3.4 Solution size pruning
Finally, we show some cuts that leverage our interest in k-plexes
with minimum size q.

The first and most obvious cut follows from the fact that all the
k-plexes generated from a given recursive call will be a subset of
K ∪ cand. This means that, whenever |K ∪ cand| is less than q, we
can cut the search as no interesting solutions will be produced.

Another less obvious, yet essential cut, is obtained from the
following lemma:

Lemma 3.3 (size pruning). Any two nodes u and v in a k-plex K
of size q, have at least q − 2k + 2 common neighbors in K .1

Proof. As each node has at most k − 1 non-neighbors in K , the
number of node in K that are not neighbors of at least one of u
and v is at most 2k − 2. From this follows that there are at least
q − 2k + 2 nodes that have both of them as neighbors. □

As when processing block(v) we are only interested in k-plexes
of size at least q containing v , this means we can immediately (and
recursively) remove from block(v) any node that does not share
q − 2k + 2 neighbors with v .

The effect of this cut is not just heuristic: we give no proof for
space reasons, but simple calculations show that this reduces the
maximum size of block(v) from d · ∆ to d · ∆/(q − 2k + 2).

In practice, as q grows, size pruning may reduce the size of the
subgraphs processed by up to orders of magnitude, as shown in
Figure 3: line sp shows the size maximum size of a block generated
on the corresponding graph with the specified q, using the size
pruning. Compared to the baseline (i.e., no optimization) one can
see how the difference is already important for q = 4, and becomes
even larger for increasing q, so much so that for q = 30 on most
graph there is hardly anything left to process. Finally, line sp +d in
Figure 3 represent the maximum block size generated by d2k, i.e.,
using both the degeneracy ordering and the size pruning: we can
see how this technique takes the best of both reductions, obtaining
much smaller sizes than the baseline for all values of q. Notably,
the effectiveness of the cuts seems to be independent from the size
of the graph, but strongly influenced by the degeneracy, as we can
observe a greater reduction on email-euall and pokec rather than
on ca-grqc and in-2004.

These cuts allow us to process even huge graphs in a short time,
provided a large enough q is chosen (see Section 5).

4 PARALLELIZATION
Concerning the parallelization of the algorithm, we first describe
how we parallelized it for the execution on a single shared memory
multi-core machine. Then, we extend our parallelization to sup-
port a cluster of multi-core computing machines with a distributed
memory.

4.1 Shared Memory, Single Machine
The parallel implementation of d2k is characterized by the presence
of multiple threads, each one performing part of the processing.
For doing this, we resort to the observation that each block(v)
can be processed independently from the others (see Section 3.1).
Accordingly, the first step of our solution is to keep all the nodes v
in a queue shared among the threads (in the following vqueue).

Each thread extracts a node from the queue and begins to process
the block associated with that node. When a thread terminates the
processing of a block, a new node is extracted from vqueue, until
there are no more nodes (and thus blocks to be processed). Since
the time required to process different blocks may be different, with
this solution we could experience some load unbalancing effects. In
particular, it could happen that most threads have terminated the
available blocks while few threads are still processing some heavier
1If u ∈ N (v), we consider u as common neighbor of u and v
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Figure 3: Effectiveness of the pruning techniques described in Sections 3.2 and 3.4 on the size of the generated blocks

blocks. To mitigate this effect, we use a work requesting approach.
If a thread detects that there are no more blocks to be processed
but some thread is still processing something, it will require the
offloading of additional work to improve the load balancing and
reduce the execution time.

The offloading is performed by means of a globally shared queue
wqueue. We keep an atomic counter indicating how many threads
have finished all the blocks and are available for additional work.
During the processing of a block, each thread periodically checks
if the size of wqueue is lower than the value of the counter. If this
is the case, the thread will put a part of the block in the queue,
instead of processing it directly. The requesting worker will then
be able to dequeue the sub-block from wqueue and to process
it. To implement this, d2k can generate an object representing a
nested recursive call (i.e., the sub-block), then hand it over to the
requesting worker, who will process it, and skip directly to the next
recursive call.

4.2 Distributed Memory, Multiple Machines
We adopt a similar approach for a cluster. Since we are in a dis-
tributed memory environment, we adopt a master-worker solution.
One computing machine will act as the master, dealing with the
distribution of the blocks to be processed to a set of workers, each
one executed on a different multi-core computing machine.

When the computation starts, the master sends a chunk of nodes
to eachworker. A generic worker, after receiving a chunk, will insert

all the nodes in its shared queue, leveraging on the parallelization
scheme used for the single computing machine to process all the
assigned nodes. Differently from the single machine case, when
there are no more blocks to be processed, instead of terminating
the execution, the worker will ask the master for a new chunk.

When the master receives a request for a new block from a
worker wr eq and there are no more blocks to assign, the master
tries to balance the work by requesting a block (or a part of it)
from an overloaded workerwvictim and by redirecting it towr eq .
Each worker periodically checks for pending stealing requests from
the master. When this is the case, and there are other nodes in the
current chunk which were not yet processed, the worker sends
some of those nodes to the master; otherwise (i.e., it is processing
the last node of the assigned chunk), it sends a sub-block to the
master. In both cases, the master will redirect the work received
fromwvictim to vr eq . This process continues until all the workers
have nothing left compute.

To select wvictim we adopt a simple heuristic. We store the
timestamp of the last chunk request received by each worker. When
selecting a victim for the stealing, we pick the worker characterized
by the lower timestamp, since the worker who has not requested
data for the longest time is likely to be the most loaded worker, i.e.,
the most suitable victim for stealing.
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Network Type n m ∆ d
2-plexes 3-plexes

q = 4 q = 10 q = 20 q = 10 q = 20
caida as 26 475 53 381 2 628 22 1 337 044 23 314 0 1 531 876 0
ca-grqc collab 5 241 14 484 81 43 12 038 377 118 13 352 1 568
jazz collab 198 2 742 100 29 26 172 8 059 2 257 233 2

celegans bio 354 1 501 186 10 12 814 5 0 248 0
homo-sapiens bio 1 027 1 166 443 17 929 795 576 0 20 301 0

(a) Small Networks

Network Type n m ∆ d
2-plexes 3-plexes

q = 4 q = 10 q = 20 q = 10 q = 20
interdom bio 1 706 78 983 728 129 60 858 742 54 562 092 34 424 664 536 552 584 954 378 852 643 230

amazon0505 prod 410 236 2 439 436 2 760 10 8 996 909 22 483 0 248 433 0
email-euAll comm 265 214 365 569 7 636 37 11 489 357 1 042 929 0 75 751 394 2 637
epinions1 soc 75 888 405 739 3 044 67 176 891 842 73 518 387 3 286 364 11 947 340 789 538 275 804

slashdot090221 soc 82 144 500 480 2 548 54 62 130 214 28 862 926 11 411 028 2 993 676 468 1 303 148 522
wiki-vote soc 8 298 100 761 1 065 53 42 757 442 9 162 660 52 1 337 634 391 156 727

(b) Medium Networks

Network Type n m ∆ d
2-plexes 3-plexes

q = 50 q = 100 q = 50 q = 100
as-skitter as 1 696 415 11 095 298 35 455 111 47 969 775 0 21 070 497 438 0
in-2004 web 1 353 703 13 126 172 21 869 488 25 855 779 9 978 037 29 045 783 792 4 257 410 159

q = 20 q = 30 q = 20 q = 30
pokec soc 1 632 803 22 301 964 14 854 47 94 184 3 5 911 456 5

q = 250 q = 500 q = 250 q = 500
uk-2005 web 36 022 725 549 996 068 1 372 171 584 106 243 475 256 406 ≥ 18 336 111 409 28 199 814

q = 2000 q = 3000 q = 2000 q = 3000
it-2004 web 35 051 939 473 649 719 1 243 927 3 209 2 727 030 6 304 ≥ 165 823 718 2 722 875

(c) Big Networks

Table 1: Considered networks and their properties, including number of k-plexes of different sizes

5 EXPERIMENTS
In this section we show an experimental evaluation of d2k, and a
comparison with the fastest known algorithms from [9] and [24]
for listing large k-plexes. As all algorithms produce the same output
(k-plexes of size at least q), we only compare the performance. We
remark that this paper only deals with the problem of efficiently list-
ing k-plexes. A qualitative study on the difference between k-plex
communities and other types of pseudo-cliques would be interest-
ing to investigate, but is out of the scope of this paper.

The evaluations have been performed on a cluster of 16 homo-
geneous machines. Each machine features a dual CPU Intel Xeon
E5-2640 v4, Broadwell based architecture, composed of 20 cores
operating at 2.40GHz and 128 GB of RAM. Each core has a private
L1 (32KB) and L2 (256KB) cache, and each CPU is equipped with
a shared L3 cache of 25MB. The HyperThreading feature was not
used. The machines are interconnected using a OmniPath network.

The program is written in C++11, compiled with gcc-6.4.0, us-
ing the -O3 optimization flag. The source code of our algorithm is
publicly available at https://github.com/veluca93/parallel_enum. In
our implementation we used C++11 threads for the shared memory
parallel implementation, and MPI plus C++11 threads for the dis-
tributed implementation. In the following discussion, the sequential
and parallel evaluations are performed on a single machine, while
the distributed tests use a different number of machines. For all
tests, we considered 12 hours of execution time as a hard limit.

Dataset. The graphs considered in our experiments are reported
in Table 1. They correspond to graphs taken from SNAP (http://snap.
stanford.edu/) and portions of web-crawls taken from LAW (http:
//law.di.unimi.it/). We divided our networks by size in three classes:
the first class, shown in Table 1(a), contains networks with up to
(approximately) 50 thousand edges, the second one (b) contains
the remaining networks with less than 10 millions edges, while
the larger graphs are in the third class (c). We use classes (a) and
(b) to compare our approach with the existing ones, setting q =
4, 10, 20 for the 2-plexes and q = 10, 20 for the 3-plexes, where q
is the minimum solution size requested. We then use the bigger
networks to study the behaviour of our approach in parallel and
distributed settings. Since these networks are much bigger, and
containmanymorek-plexes, we change the value ofq from network
to network. We will later show how to choose suitable values for
q. For each network we report some statistics and its type.2 In
particular, we report the number of 2-plexes and 3-plexes greater
than q for different values of q. For some of these values, we show
just a lower bound on this number (the ones reporting ≥) since our
computation exceeded the time limit of 12 hours. This happened in
the cases where there was a huge number of solutions.

It is worth observing that graphs with a similar number nodes
or edges can contain a very different number of k-plexes. This may

2as: autonomous systems, collab: collaboration, bio: biological, prod: product co-
purchasing, comm: communication, soc: social, web: web crawl.
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be related to a higher density, and it seems that a high average
degree can correspond to a huge amount of 2- and 3-plexes. The
most striking example is the biological graph interdom, relatively
small but with average degree 92.6, that has millions of 2-plexes and
billions of 3-plexes. On the other hand, the collaboration network
ca-grqc has a similar number of nodes and a smaller average
degree (about 1/17th that of interdom), and indeed the number of
2- and 3-plexes is orders of magnitude smaller. In some other cases,
the number of k-plexes is more deeply related to the topology of
the networks. This is the case of as-skitter and in-2004 which
have roughly the same number of nodes and edges but the number
of 2-plexes greater than 100 is very different: almost 10 millions
for in-2004 and 0 for as-skitter. Small networks with a huge
amount of large k-plexes, like interdom, seem to be uncommon,
meaning that despite the exponential upper bound, the number of
k-plexes in real-word networks is in practice relatively small for
suitable values of q.

Choosing q. Due to the effectiveness of the pruning techniques,
d2k finishes quickly when q is too high to find any result. This
feature can be exploited to quickly find the largest k-plexes in a
graph. The philosophy is similar to that used in [9], but with the
important difference that we do not require listing all maximal
cliques first, something which is trivial on small graphs but far
from it on larger ones. For the larger graphs in Table 1(c), we
thus adaptively found values of q corresponding to their larger
communities.

5.1 Performance Evaluation
In this section we evaluate the performance of our method d2kwith
respect to the competitors gp [24] and lp [9] using the graphs in
Table 1(a) and (b) when generating 2-plexes and 3-plexes of size at
least q. All the methods were run in a sequential setting. Moreover,
note that, as q is always greater than k2, all the k-plexes to be listed
have diameter at most 2, which means that all the algorithms return
the same set of solutions.

To give a general picture of the running times for the different
values of q, we reported time performances of all the approaches in
Table 2 using the small graphs in Table 1(a). It is worth observing
that lp and gp show their best behaviour in opposite scenarios: lp
runs out of time (12 hours) for smaller values of q and improves
when q grows; gp is faster than lp for small values of q, but its
performance does not improve as q grows, even when there are no
solutions to list, i.e., no k-plexes of size q or larger (see the values
reporting ∗ in Table 2). Indeed, it seems that gp sometimes spends
a lot of time in cases where there are no solutions, while for lp this
does not seem to happen.

Our proposed algorithm d2k always outperforms both competi-
tors, in most cases by at least an order of magnitude, terminating
in less than one second or few seconds for all the values of q for
both 2- and 3-plexes.

In order to quantify our improvement with respect to the state
of art, we used the medium sized graphs in Table 1(b). We report
the time needed by d2k (indicated as T ) and the speedup S of d2k
with respect to the best running time achieved by both lp and gp.
In particular, we divide the best running time of the competitors by
T to obtain S . Table 3 reports T and S for both 2- and 3-plexes, for

different values of q. OOT means that d2k ran out of the maximum
time allowed (12 hours). The speedup S is set to ⋆whenever both
our competitors ran out of the maximum time or memory allowed.
For the great majority of the graphs the values of S is always greater
than 20, meaning that we spent less than 1/20th of the running
time of our competitors. In the case of the 2-plexes with q = 10
and q = 20, our improvement is even more evident, as d2k is
much faster and often outperforms the competitors by orders of
magnitude. In the case of 3-plexes with q = 20 and q = 30, for
the great majority of the cases both our competitors ran out of
time or memory while d2k finished in time. On the other hand,
when setting q = 10, d2k and both the competitors went out of
time. We will be able, however, to deal with these graphs using the
parallel version of our algorithm. Finally, Table 3 (in particular with
respect to 3-plexes) shows how the hardness of k-plex enumeration
is linked to the density, rather than size, of the graphs. The graph
interdom, the smallest in this table, is the hardest one to process,
as even for q = 30 d2k (and the competitors) run out of time; on
the other hand, it can be seen in Table 1 how interdom has the
highest degeneracy among these graphs, meaning that it is denser.
Similarly, epinions1 has the second-highest degeneracy in this
graph, and it is the only one other than interdom to run out of
time for q = 20.

Setup time. Since d2k needs the degeneracy ordering of the nodes
of the given network, we report for the sake of completeness the
time needed to compute this ordering on the networks in our dataset.
It can be observed that this setup time (shown below, in seconds)
is completely negligible with respect to the time needed to list
k-plexes (see Table 2 and Table 3).

Networks Time
ca-grqc 0.01
celegans 0.01
jazz 0.01
caida 0.02

homo-sapiens 0.02
interdom 0.02
wiki-vote 0.04

soc-epinions1 0.10

Networks Time
email-euAll 0.12

slashdot090221 0.13
amazon0505 0.73
as-skitter 2.86
in-2004 1.95
pokec 5.45
uk-2005 79.21
it-2004 94.04

5.2 Evaluation of the parallel and distributed
implementations

For the parallel evaluation of d2k, we executed the program on a
single machine of the cluster with a variable number of threads,
ranging from 1 to 20, the number of cores available in the machine.

To evaluate the effectiveness of the parallelization, we consider
the speedup obtained with respect to the sequential version, i.e. the
ratio between the execution time of the sequential implementation
over the execution time of the parallel version with a given number
of threads. Figure 4 shows the speedup obtained by the parallel
version for increasing number of threads on two scenarios (2-plexes
of size at least 4, and 3-plexes of size at least 20) for three example
graphs. In both situations d2k obtains good speedups, close to the
ideal one (represented by the dotted line).

Table 4 reports the parallel execution time obtained with 20
threads and the corresponding speedup with respect to the sequen-
tial implementation for the graphs in Table 1(b). We obtained good
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Network
2-plexes 3-plexes

q = 4 q = 10 q = 20 q = 10 q = 20
d2k gp lp d2k gp lp d2k gp lp d2k gp lp d2k gp lp

caida 18.29 449.89 OOT 0.72 357.35 OOT *0.01 *321.49 *0.10 50.86 OOT OOT *0.01 *OOT *OOT
ca-grqc 0.07 3.98 OOT 0.01 3.19 2 964.91 0.01 2.50 12.49 0.07 17.27 OOT 0.01 48.42 471.90
jazz 0.25 6.47 OOT 0.12 5.28 OOT 0.01 2.40 OOT 2.89 29.12 OOT 0.01 41.26 OOT

celegans 0.08 3.27 OOT 0.01 1.93 1 186.19 *0.03 *1.65 *0.04 0.01 48.20 OOT *0.01 *50.48 *0.01
homo-sapiens 4.89 123.17 OOT 0.02 101.91 OOT *0.01 *91.71 *0.10 1.27 OOT OOT *0.01 *24 383.34 *0.01

Table 2: Time comparison among d2k, gp [24], and lp [9] for generating all 2- and 3-plexes of size greater than q (time is in
seconds) for the small graphs in Table 1(a). OOT: the process did not terminate within 12 hours. *: there were no solutions.

Network
2-plexes 3-plexes

q = 4 q = 10 q = 20 q = 10 q = 20 q = 30
T(s) S T(s) S T(s) S T(s) S T(s) S T(s) S

interdom 1 032.47 16.24x 1 040.76 15.45x 989.02 14.39x OOT ⋆ OOT ⋆ OOT ⋆
amazon0505 56.76 28.68x 0.33 4 183.13x *0.01 600x 4.16 ⋆ *0.01 2 081x *0.01 556x
email-euAll 157.35 56.53x 31.46 228.09x *0.65 9384x 2 995.51 ⋆ 76.96 ⋆ 2.99 ⋆
epinions1 2 945.71 ⋆ 1 545.27 ⋆ 283.93 67.75x OOT ⋆ OOT ⋆ 3 720.38 ⋆

slashdot090221 989.99 39.81x 408.99 88.74x 260.39 90.29x OOT ⋆ 30 278.48 ⋆ 3 313.04 ⋆
wiki-vote 532.22 22.16x 262.72 27.01x 16.79 76.59x OOT ⋆ 2 763.42 ⋆ 341.17 ⋆

Table 3: Time (t) of d2k and speedup (s) d2k obtains with respect to the fastest between gp and lp for medium sized graphs.
OOT: d2k ran out of time. ⋆: both gp and lp ran out of time.

Network
2-plexes 3-plexes

q = 4 q = 10 q = 20 q = 10 q = 20 q = 30
T (s) S T (s) S T (s) S T (s) S T (s) S T (s) S

interdom 79.91 2.92x 61.34 16.97x 57.23 17.28x OOT ⋆ OOT ⋆ OOT ⋆
amazon0505 3.57 15.90x 0.09 3.81x 0.01 1.00x 0.347 11.98x *0.063 0.21x *0.05 0.17x
email-euAll 8.72 18.05x 1.84 17.14x 0.10 6.33x 164.47 18.88x 4.29 17.9x *0.04 0.16x
epinions1 165.82 17.76x 90.57 17.06x 15.72 18.07x 18496.36 ⋆ 2869.65 ⋆ 186.02 19.3x

slashdot090221 55.63 17.80x 24.06 17.00x 15.61 16.68x 2800.90 ⋆ 1513.92 16.46x 165.65 18.7x
wiki-vote 28.68 18.55x 14.04 18.72x 0.91 18.37x 2224.84 ⋆ 140.79 19.63x 0.01 4.3x

Table 4: Parallel execution time and speedup with respect to sequential version. ⋆: sequential algorithm ran out of time.

values of speedup for all the situations in which the sequential run-
ning time is not negligible (i.e. more that 1 seconds). Reasonably, if
this is not the case, the overhead of the parallelization reduces (or
eliminates) the benefits of the parallel execution.

In general, the parallel implementation gives an almost linear
(in the number of used threads) reduction of the execution time.
This allowed us to complete the execution within the deadline of a
higher number of scenarios with respect to the case of the sequential
implementation (i.e. all the 2-plexes cases and all the 3-plexes with
the exception of interdom). Achieving such a good speedup has
been possible thanks to a careful design of the sequential algorithm.
For example, due to the efficient pruning performed on the blocks,
the size of the data to keep in the processors’ caches is reduced,
decreasing contention effects on the last level caches and improving
the scalability of the parallel implementation.

Furthermore, the parallel implementation enables the enumera-
tion of meaningful k-plexes on the biggest graphs of Table 1. Table 5
shows the obtained execution times.

Concerning the support for distributed memory clusters of mul-
ticore machines, we show in Figure 5 the speedup we achieve for
different numbers of machines with respect to a single computing
machine. In this case the speedup is defined as the execution time
when using one machine (with 20 cores), divided by the execution
time when using a given number of machines (each one with 20
cores). For this test we selected some of the biggest graphs, since it

Network q
Time (s)

2-plexes 3-plexes

as-skitter 50 3531.87 OOT
100 0.24 0.25

in-2004 50 43.51 OOT
100 18.209 9720.47

pokec 30 0.63 0.82
50 *0.48 *0.6

uk-2005 250 1567.26 OOT
500 16.14 190.6

it-2004 2000 125.53 OOT
3000 18.59 407.49

Table 5: Parallel execution time over big graphs using 20
threads. *: there were no solutions.

would not be very meaningful to use a cluster for problems which
takes few seconds to be computed on a single parallel machine. As
depicted by the Figure, the speedup differs according to the graph.

In some cases (e.g. wiki-vote) by using 16 multicore machines
we achieve a speedup of ~12 with respect to the single machine.
Considering that on the single machine we had a speedup of ~19
with respect to the sequential version, we reduced the execution
time by ~230 times with respect to the sequential implementation.
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Figure 4: Speedup of the parallel over the sequential version
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Figure 5: Speedup of the distributed case

An interesting study case involves the computation of 3-plexes
with q = 50 for in-2004. While a parallel implementation on a
singlemachinewas not able to terminate in 12 hours, our distributed
implementation using 16 machines was able to find all the k-plexes
in less than 3 hours. As the experiments suggest a close to ideal
scaling factor, we may conjecture that a sequential implementation
of the algorithm would have required several weeks to find the
same result.

6 RELATEDWORK
The papers by Bron and Kerbosch [6] and Tsukiyama et al. [22] are
at the heart of many algorithms for enumerating cliques and their
relaxed versions such as k-plexes due to their effectiveness. The
Bron-Kerbosch algorithm relies on a backtracking scheme that is
adopted in several efficient algorithms due to its simplicity and good
practical performance [12, 20, 26]. While the original version [6]
does not provide any guarantee, the version in [20] guarantees a
total running time of O(3n/3), which worst-case-optimal, and the
one in [12] further improves the work for sparse graphs, which may
have up to (n − d)3d/3 maximal cliques, by producing an algorithm
with O(d(n − d)3d/3) time. This strategy has been adapted to the

enumeration of maximal k-plexes in [25], and inspired the similar
backtracking structure in [24].

The algorithm by Tsukiyama et al. has been originally conceived
for the equivalent problem of enumerating maximal independent
sets, and has been subsequently adapted to maximal clique enumer-
ation by Chiba-Nishizeki [8]. Makino-Uno [16] has reinterpreted
some of its ideas in the paradigm of reverse search introduced by
Avis and Fukuda [1]. A space efficient algorithm with bounded de-
lay has been given in [10]. A simplified version of this strategy has
been applied to the enumeration of maximal k-plexes in [3], which
proposed the first output-sensitive (i.e., whose time is proportional
to the number of solutions found) k-plex enumeration algorithm,
and then further exploited by [9] for large k-plexes.

As k-plexes generalize cliques, their discovery takes more time
than finding cliques. For this reason several algorithms for listing all
k-plexes [3, 25] do not scale well with large graphs. For example, [3]
needs to maintain a large database of all maximal k-plexes found so
far to avoid duplicates, which can create contention and excessive
space usage. A new trend has emerged in recent years to simultane-
ously speed up the computation and avoid finding solutions of little
interest for the final user: that is looking for a reduced number of
just significant results. For cliques, an example is the work by Zhou
et al. for finding the top-k cliques [28]. Zhai et al. [27], rather than
aiming for large sized solutions, define a structure similar to the
k-plex, where small solutions are allowed as long as they are dense
enough. Liu and Wong [15] also propose a variant of the k-plex, in
which k varies with the size of the solution, which allows for search
space cuts based on node degree. Behar and Cohen [2] aim at find-
ing large connected s-cliques, i.e., connected sets of nodes within
distance s of each other. As for k-plexes, examples are [24] and [9].
Both algorithms include a minimum size parameter which cuts of
small solutions from the search, with hard-coded lower bounds in
their structure to improve their efficiency: [9] finds k-plexes with
at least k2 nodes, and after a careful reading of the paper (and as
confirmed by the authors in private communications) it can be seen
that [24] finds k-plexes with at least k + 1 nodes. It should be noted
that we lack good theory to understand why these algorithms can
work efficiently on real-world data as some of them could require
exponential time in the worst case.
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Finally, it should be remarked that subgraph enumeration is
one of several techniques for extracting community structure from
networks. Other examples include k-core [18] and k-truss decom-
position [14], which aim at removing sparse parts of the networks,
leaving only the most interconnected areas. A comprehensive sur-
vey of the area can be found in [13].

7 CONCLUSION
We proposed d2k, the first algorithm that can find k-plexes of very
large real world networks, by an effective combination of algorithm
design and insight on the problem. To maximize this benefit, we
proposed a parallel and distributed implementation which scales up
nicely to tens ofmachines, with tens of cores each, further extending
the reach of d2k to networks whose sequential processing time
would otherwise be massive. This allowed to compute for the first
time k-plexes in large real-world networks.

d2k moves an important chunk of today’s real data within the
reach of pseudo-clique detection, improving the applicability of
existing network analysis methods. As a toy example, we provide
some insight on the largest communities in two networks with half
a billion edges, and further validate our algorithm on real networks
of different types. We believe that d2k, with its open source imple-
mentation, sets a milestone for dense subgraph enumeration, and
will open new directions for community discovery in large graphs.
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