
Discovering k-Trusses in Large-Scale Networks
Static Graph Challenge: Subgraph Isomorphism (k-truss)

Alessio Conte
National Institute of

Informatics, Tokyo, Japan
conte@nii.ac.jp

Daniele De Sensi
Università di Pisa

Pisa, Italy
desensi@di.unipi.it

Roberto Grossi
Università di Pisa

Pisa, Italy
grossi@di.unipi.it

Andrea Marino
Università di Pisa

Pisa, Italy
marino@di.unipi.it

Luca Versari
Università di Pisa

Pisa, Italy
luca.versari@di.unipi.it

Abstract—A k-truss is a subgraph where every edge belongs to
at least k-2 triangles in the subgraph. The truss decomposition
assigns each edge the maximum k for which the edge belongs
to a k-truss, and the trussness of a graph is the maximum
among its edges. Discovery algorithms for k-trusses and truss
decomposition provide useful insight for graph analytics (such as
community detection). Even though they take polynomial time,
on massive networks they suffer from handling a potentially
cubic number of wedges: algorithms either need a long time
to recompute triangles several times, have high memory usage,
or rely on the large number of cores on graphic units. In this
paper we describe EXTRUSS, a highly optimized algorithm for
truss decomposition which outperforms existing algorithms. We
then introduce a faster algorithm, HYBTRUSS, which finds the
trussness of a graph using less time and space than EXTRUSS.
Our algorithms take the best of existing approaches having good
performance, low memory usage, and no need for sophisticated
hardware systems. We compare our algorithms with the state-of-
the-art on a set of real-world and synthetic networks. EXTRUSS
processes graphs with over a billion edges, which seems difficult
for the competitors, and our HYBTRUSS is the first algorithm
able to find the trussness of a graph with over 25 billion edges.

Index Terms—k-trusses, truss decomposition, graph algo-
rithms, HPEC 2018 graph challenge

I. INTRODUCTION

The notion of k-trusses has spread in network analysis and
graph mining over the years, and is gaining momentum for
other purposes other than security [3]. Given an integer k ≥ 2,
the k-truss of an undirected graph G is the subgraph H of G in
which every edge belongs to at least k−2 triangles. Note that
k-trusses can be computed in polynomial time [3]. The k-truss
decomposition of G corresponds to assigning each edge its
trussness value, i.e., the highest k for which the edge belongs
to a k-truss. Given the truss decomposition, it becomes easy to
extract the k-truss for any k, and thus for the largest k, which
defines the graph trussness. Furthermore, it can be proved that
the k-truss of a graph can be obtained by recursively deleting
edges which participate in less than k− 2 triangles [3] 1 This
simple strategy, sometimes referred as peeling, is surprisingly
effective, and is at the heart of the best performing algorithm
for computing k-trusses and k-truss decomposition [7].

Work partially supported by MIUR, Italy, and by JST CREST, Grant
Number JPMJCR1401, Japan.

1This recursive deletion reminds how k-cores are obtained by recursively
removing nodes with less than k neighbors.

In this paper we present fast algorithms to find the truss
decomposition on large real-world networks. Their time com-
plexity is O(mα), where m is the number of edges and
α = O(

√
m) is the arboricity in the input graph G. The goal

is proposing simple, efficient algorithms, which can compete
or even outperform state of the art algorithms while keeping
a small memory footprint (optimized for a single machine).

In order to get a scalable solution for truss decomposition
on massive graphs, a challenge is that high degree nodes create
many wedges. Several solution perform node reordering such
as forward [10] or reverse CuthillMcKee [8], where the nodes
are numbered according to a particular breadth-first traversal
where neighboring nodes are visited in order from lowest
to highest node order. We obtain the same effect without
reordering, using the endpoint of min-degree of each edges,
but without any bucketing [1]. We circumvent the drawback
of dense portions of triangles by indirectly removing several
edges using parallel and batch operations. We update the
number of triangles without needing to recompute them at
every iteration [4].

Other features include small memory requirement during its
execution, and the ability to quickly keep the adjacency lists
sorted and compacted, which dramatically affects the cache
complexity and allows us to use SIMD operations for list
intersection and compaction. In several solutions, most of the
performance of the code lies in the implementation of the
intersection operation between adjacency lists.

Finally we introduce a very fast approximate algorithm,
APXTRUSS, to estimate the graph trussness. Combining the
strengths of EXTRUSS and APXTRUSS, we obtain a new
algorithm, HYBTRUSS, that computes the exact edge trussness
when sufficiently large, and that exhibits all the best traits of
known algorithms: good performance, low memory usage, and
no need for sophisticated hardware systems.

We compared EXTRUSS to the best known approaches: [12]
and [6]. The former is a finalist, and the latter won a student in-
novation award in the 2017 GraphChallenge [7]. We have show
in Section VI that our algorithm outperforms the competitors
and scales up to more than 1 billion edges, while competitors
do not always terminate. Finally, show that HYBTRUSS further
improves the performance while still finding the exact result
in practice. This allows us to find, in less than 12 hours, the
trussness of a web graph with about 1 billion nodes and over



Algorithm 1: Structure of algorithm EXTRUSS

Input : Graph G = (V,E)
Output: Decomposition truss[] and trussness tG of G

1 foreach edge e ∈ E do compute support [e]
2 t← 0
3 while E 6= ∅ do
4 t← max(t, supportmin(G))
5 Q ← {e ∈ E : support [e] ≤ t} // edges to delete
6 parallel foreach e ∈ Q do
7 truss[e]← t+ 2
8 E ← E \ {e} // remove e from G
9 Update support []

10 Return truss[], tG = t+ 2

25 billions of edges in less than 12 hours. As far as we known
this the largest network in known literature whose trussness
has been computed.

II. EXACT ALGORITHM

We introduce our first algorithm, EXTRUSS, which finds
the truss decomposition of a given graph G = (V,E). The
algorithm is based on the well known peeling strategy. We
keep track in t of the maximum support found so far for
a removed edge, and mark the trussness of removed edges
accordingly. Its pseudo-code is shown in Algorithm 1. Using
the queue Q to collect all edges with support below t, we
can parallelize both their removal and the consequent update
of the support, which is a costly operation. In turn, removing
many edges at once may cause many other edge to fall below
the required support, and these can be quickly added to Q and
removed in the next step.
Data Structures: As we deal with massive graphs, the data
structures used by EXTRUSS must at the same time be fast
to access and as small as possible in order to fit in memory
(in practice, using more than linear space does not allow to
scale up to very large graphs). Each node v ∈ V has a unique
identifier id(v) ∈ [0, . . . , n − 1], and each edge e ∈ E has a
unique identifier id(e) ∈ [0, . . . ,m − 1], where n = |V | and
m = |E|. When referring to a node or edge x, for simplicity
also refer to its identifier as x. This is a summary:

1) G: an array containing all adjacency lists, consecutively
(length = 2m)

2) Map each position (i.e., index) in G to

• Id of the corresponding edge
• Edge has been removed or not (boolean flag)

3) Map each node id to position in G of

• Start and end of its adjacency list
• First neighbor in its list larger than itself

4) Map each edge id to ids of its extremes and support

This information takes 40–60 bytes per edge.2

Operations: The algorithm is designed to only use operations
which can be highly optimized in practice. For example, it
never requires random testing of adjacency between any two
nodes, which is likely to cause a cache miss.
• EXTRUSS does not use node ordering, a costly step (for

large graphs) found in other algorithms (e.g. [8], [10]).
• When removing edge {u, v}, we update the supports by

decreasing by 1 that of edges from u or v to a node
in N(u) ∩ N(v), which can be implemented quickly as
shown later. Updates take constant time each thanks to
our data structures.

• If the edges incident to any one node are less than t+1,
we can remove them. We track degrees using counters to
quickly spot the nodes and add their edges to Q.

• If the degree of both extremes of a removed edge is below
t+1, we skip updating the support of incident edges, as
they will all surely be removed.

We adopted the following strategy for intersecting two lists
A and B (assuming |A| ≥ |B|):
• If |B| ≤ |A| ≤ 4|B|, i.e., the lists are balanced, we

perform fast intersection with SIMD operations [5]: e.g.,
we divide them in chunks of size 4, comparing one
against rotations of the other with SSE/AVX. Thanks to
the pipeline, these 4 have the cost of a single instruction.

• If |A| > 4|B|, we use classic ordered list intersection with
two indices i on A and j on B. j is increased by one each
time (as usual), but i is increased by logarithmic search:
we first try to increase i by 4, then double until we go
over B[j]. Finally we use binary search between the last
two values of i, at a total cost of O(|B| log(|A|/|B|)).

In practice, the intersection takes at most one scan of each
list, which is cache-friendly and easy to prefetch, and the
cost is proportional to the size of the smaller list. This is
particularly relevant in real-world graphs, where most nodes
have few neighbors, but some may have a huge amount of
them (see, e.g., scale-free/power-law graphs).

III. APPROXIMATED ALGORITHM APXTRUSS

We wonder how to further speed up the good performance
of EXTRUSS, especially for large graphs, which need relatively
expensive hardware.3 We aim to push the bar further, by
providing an algorithm which processes graphs larger than the
available memory without compromising the performance.

In this section, we discuss APXTRUSS: an approximate
algorithm which returns an upper bound tU and lower bound
tL for the graph trussness with tU ≤ ctL for some constant
c ≥ 1. We apply APXTRUSS in an unusual fashion, as a
building block for an exact algorithm, HYBTRUSS, which

2Assuming at most 232 nodes and 264 edges, i.e., using 32 bit unsigned
integers for node ids, a reasonable assumption even for very large graphs
(edges correspond to 2 nodes, and an edge’s support is ≤ n− 2). Otherwise,
switching to 64 bit integers doubles memory usage in the worst case. The
variability depends on the n

m
ratio.

3And this is not likely to change, as the size of observable real-world graphs
seem to increase rapidly.

2



exploits APXTRUSS and EXTRUSS to return the exact trussness
(and the maximum t-truss) using less time and space than
EXTRUSS, under suitable assumptions.

A key feature of the algorithm is a time/quality trade-off.
Furthermore, its structure is suitable for an efficient external
memory implementation, which allows us to overcome the
limit of main memory size.
Data Structures: The key difference with respect to EXTRUSS
is that APXTRUSS recomputes supports from scratch at each
iteration, thus does not need to optimize data structures for
updating the supports. As such it only uses the following
structures:

1) G as concatenation of the nodes’ ordered adjacency lists
2) Map each node id to the start of its adjacency list in G
3) Map each edge id to its support
We can bound space to around 12–20 bytes per edge. Note

that this structure is resident in the secondary memory, and
mapped to the main memory using mmap, so that external
memory handling is left to the OS.
Operations: APXTRUSS does not update supports but re-
computes them from scratch, which is faster when removing
many edges at once. This is done by intersecting the neighbor-
hood of the endpoints of each edge, as explained for EXTRUSS.
The process is also sped up by considering, for edge {u, v},
only neighbors larger than both u and v: this process still
finds all triangles and is significantly faster. Moreover, we
consider all edges incident to the same node at the same time
to minimize cache misses. Finally, rather than flagging the
removed edges, APXTRUSS removes them from G, making
the data structures smaller, and thus later iterations faster.

IV. HYBTRUSS: TAKING THE BEST OF BOTH WORLDS

Finally, we present HYBTRUSS: an algorithm which finds
the trussness faster and with less space than EXTRUSS, and
thus is able to process much larger networks.

We run APXTRUSS, which starts removing edges from G,
then switch to HYBTRUSS as soon as the remaining edges
fall below a given threshold E . If initially E ≤ E , we can
immediately run EXTRUSS and obtain the correct result. On
the other hand, if EXTRUSS is never executed, we obtain the
result of APXTRUSS (a c-approximation). Otherwise, we obtain
tL and tU returned by the partial execution of APXTRUSS, and
t̃G returned by EXTRUSS. We can observe the following:

1) No edge with trussness t > tU is removed by APXTRUSS
(since APXTRUSS never removes edges with support
more than tU ), so if t̃G ≥ tU then t̃G is exactly tG.

2) Otherwise, tU > tG, and since tL ≤ tG, tL and tU still
give an approximation (where the lower bound can be
improved to max(tL, t̃G)).

More in general, the decomposition truss[] given by EX-
TRUSS is correct for all values of trussness ≥ tU , so when we
find the correct value of tG we also find the max k-truss. In
practice, in Section VI HYBTRUSS is faster than EXTRUSS and
always finds the exact trussness, even when E is significantly
smaller than the initial number of edges. In Section VI-C we

use HYBTRUSS to find the trussness of a graph with over 25
billion edges.

V. EXPERIMENTS

This describes our experimental settings and choices. We
compare our exact algorithm with the fastest known exact
algorithms for k-truss decomposition, and the python baseline
provided for the challenge. We also compare our approximated
and hybrid approaches with the exact method. The perfor-
mance evaluation uses the metrics used in the past edition of
the GRAPHCHALLENGE (e.g., see [9]).

a) Competitors:
• EXTRUSS: Our exact algorithm (see Algorihtm 1).
• MSP: the parallel algorithm in a shared-memory setting

proposed in [12]. It has been one of the finalists of the
2017 GRAPHCHALLENGE [7]. The code has been down-
loaded from https://github.com/KarypisLab/K-Truss.

• PKT: the approach proposed in [6]. It won a student
innovation award in the 2017 GRAPHCHALLENGE [7].
The code has been downloaded from https://github.com/
humayunk1/PKT.

• BASELINE: this is the python sequential baseline provided
by the organisers of the GRAPHCHALLENGE.

PKT and MSP are the state-of-the-art algorithms for k-trusses.
Since there is no direct comparison between PKT and MSP as
this comparison is left open in [12], we consider both of them
as our direct competitors.

We will also analyze the performance of our approximated
algorithms.
• APXTRUSS: Our approximated algorithm for k-trusses

and trussness.
• HYBTRUSS: Our combination of EXTRUSS and APX-

TRUSS, which approximates the k-trusses but computes
exactly the trussness of the graph. For less edges than
this threshold the algorithm is equivalent to EXTRUSS.

For all the algorithms (except the baseline which is sequen-
tial), we used the maximum degree of parallelism allowed by
the single-machine architecture (24 threads).4

b) Dataset: Our dataset is taken from LAW (law.di.
unimi.it/) and from [7]. Some of them are also distributed
by SNAP (snap.stanford.edu/). Our sample of networks cover
collaboration, autonomous systems, social, collaboration, ran-
dom, and web networks. We report in Table I the number of
nodes, edges and the maximum k for each graph, which has
been made undirected.

c) Software and architecture: The evaluations have been
performed on a 12-core (24-thread) machine with Intel(R)
Xeon(R) CPU E5-2620 v3 at 2.40GHz, with 128GB of shared
memory. The operating system is a Ubuntu 14.04.2 LTS, with
Linux kernel version 3.16.0-30.

Our algorithms have been implemented in C++11, compiled
with gcc-5.5.0, using the -O3 optimization flag. The
source code of our algorithm is available upon request from the

4Varying the number of used threads, the scalability of all the approaches
is quite similar, with PKT scaling slightly better than EXTRUSS and MSP.

3



NETWORK TYPE NODES EDGES kmax

soc-Epinions1 (epi) soc 75 888 405 739 33
as-Skitter (skit) as 1 696 415 11 095 298 68
eu-2005 (eu05) web 862 664 16 138 468 387
imdb (imdb) coll 913 201 37 588 613 1 298
LiveJournal1 (jour) soc 4 847 571 42 851 236 362
hollywood-2009 (ho09) coll 1 139 905 56 375 711 2 209
enwiki-2013 (wiki) soc 4 206 785 91 939 728 53
hollywood-2011 (ho11) coll 2 180 759 114 492 816 1 298
graph500-ef16 (g500) rand 17 043 781 523 467 448 996
arabic-2005 (arab) web 22 744 080 553 903 073 3 248
it-2004 (it04) web 41 291 594 1 027 474 947 3 222
twitter-2010 (twit) soc 41 652 230 1 202 513 046 1 998
gsh-2015-host (gshh) web 68 660 142 1 502 666 069 9 923
com-Friendster (frie) soc 65 608 366 1 806 067 135 129
gsh-2015 web 988 490 691 25 690 705 118 5 204

TABLE I
GRAPHS CONSIDERED IN OUR EXPERIMENTS. EACH GRAPH HAS BEEN

MADE UNDIRECTED. THE LAST GRAPH HAS BEEN CONSIDERED JUST FOR
HYBTRUSS (SEE SECTION VI-C).

PC members. OpenMP has been used to implement the parallel
version of our code, and we used AVX2 for instruction-level
data parallelism.

d) Measures: The measures listed below are those sug-
gested by GRAPHCHALLENGE organizers [9]5. All our mea-
surements for all the algorithms exclude the reading phase of
the network file.

• EXECUTION TIME: The time (in seconds) needed to
conclude the k-truss decomposition. The maximum time
allowed for each competitor in each experiment has been
set to 2 hours.

• RATE: The ratio between number of edges and the
execution time.

• MEMORY: The peak memory, i.e. the maximum memory
(in GigaBytes) used by a competitor during its execution.

• POWER CONSUMPTION: The average power consump-
tion (in Watts), i.e. the energy consumption divided
by the execution time. For measuring it we used the
Mammut6 [11] library which, on the architecture used
for our experiments, relies on Intel’s RAPL counters.

• RATE PER POWER. This measure is computed as the ratio
between the rate and the average power consumption and
can be interpreted as a measure of the efficiency (in terms
of power consumption).

VI. RESULTS

This section is divided in three parts, Sections VI-A–VI-C.
The first deals with the exact approaches and evaluates the
different metrics presented in Section V for the graphs in our
dataset. The second deals with approximated approaches, and
the last one shows the result of one of our approaches with
the largest graph in our dataset. As we will see, EXTRUSS
outperforms its competitors, and further HYBTRUSS outper-
forms EXTRUSS for solving the simpler problem of finding
the trussness.

5These are also listed at https://graphchallenge.mit.edu/sites/default/files/
documents/SubGraphChallenge-2017-02-09.pdf

6https://github.com/DanieleDeSensi/mammut

A. Exact Algorithms

In this section we compare EXTRUSS with respect to the
other exact methods, namely MSP, PKT, and BASELINE. In
the first part we focus on the comparison between EXTRUSS
and BASELINE, as this comparison involves just the smallest
network, due to the limitations of BASELINE. In the second
part we focus on the comparison with MSP and PKT. We
remark that the results we obtained are consistent with those
computed by MSP [12] and PKT [6]. In all the experiments,
we write OOM to mean out-of-memory, when an algorithm
exceeded the available memory of our machine (128GB), or
OOT when the algorithm did not finish within the 2 hours
time limit.

1) Comparing EXTRUSS with the BASELINE: We discuss
the results of a comparison between BASELINE and EXTRUSS
for the smallest graph of our dataset epi.
• Looking at the rate, EXTRUSS is 1577 times faster than

BASELINE.
• The memory usage of EXTRUSS is 894 times lower than

BASELINE.
• The rate per power of EXTRUSS is 906 times higher than

the one of BASELINE.
2) Comparing EXTRUSS with the state of the art: In the

following, we compare EXTRUSS with MSP and PKT observing
the behaviour of the measures introduced in Section V.

a) Execution Time and Rate: In Figure 1 we show the
execution time of the competitors. The missing points for MSP
and PKT for the larger graphs are due to their OOT or OOM.
Our algorithm EXTRUSS is almost always the fastest one and
the improvement is much more evident in the larger graphs.
On the graphs having more than 500 millions and less than
1.1 billions of edges, we are from four to seven times faster
than PKT. For graphs with more than this number of edges,
we had similar time performance in the case of friend, but
for the other graphs PKT ran OOT. For some graphs MSP is
faster than PKT, but it ran OOM for all the graphs having more
edges than the ones of graph500, i.e. roughly 500 millions
of edges.

Execution Time (s)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

epi
skit

eu05
im

db
jour

ho09
w
iki

ho11
g500

arab
it04

tw
it

gshh
frie

4*
10
5

1.
1*

10
7

1.
6*

10
7

3.
7*

10
7

4.
2*

10
7

5.
6*

10
7

9.
1*

10
7

1.
14

*1
0
8

5.
2*

10
8

5.
5*

10
8

10
9

1.
2*

10
9

1.
5*

10
9

1.
8*

10
9

EXTRUSS
MSP
PKT

Fig. 1. Comparison of the execution time (y-axis) among EXTRUSS, MSP and
PKT for our graphs (x-axis) with their corresponding number of edges (upper
x-axis). Line interruptions corresponds to OOM experiments. Lower is better.

The improvement of EXTRUSS in the case of smaller graphs
is more evident looking at Figure 2, where we show the
rate, i.e. ratio between number of edges and time. EXTRUSS

4



(green line) performs almost always better than the others. The
improvement with respect to MSP seems to be quite constant,
while the improvement on PKT seems to more variable and
more graph dependant.

Rate (edges/s)

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

epi
skit

eu05
im

db
jour

ho09
w
iki

ho11
g500

arab
it04

tw
it

gshh
frie

4*
10
5

1.
1*

10
7

1.
6*

10
7

3.
7*

10
7

4.
2*

10
7

5.
6*

10
7

9.
1*

10
7

1.
14

*1
0
8

5.
2*

10
8

5.
5*

10
8

10
9

1.
2*

10
9

1.
5*

10
9

1.
8*

10
9

EXTRUSS
MSP
PKT

Fig. 2. Comparison of the rate (y-axis) among EXTRUSS, MSP and PKT for
our graphs (x-axis) with their corresponding number of edges (upper x-axis).
Line interruptions corresponds to OOM or OOT experiments. Higher is better.

b) Memory Usage: Concerning the memory usage, in
Figure 3 we show our results for the competitors. MSP seems to
use much more memory than the others and this is the reason
why it ran OOM on the larger graphs. On the other hand, the
memory performance for PKT seems to be slightly better than
EXTRUSS, and this is at the price of a higher execution time
since, for instance, on it and gshh it ran OOT (see Figure 1).

Memory (GB)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

epi
skit

eu05
im

db
jour

ho09
w
iki

ho11
g500

arab
it04

tw
it

gshh
frie

4*
10
5

1.
1*

10
7

1.
6*

10
7

3.
7*

10
7

4.
2*

10
7

5.
6*

10
7

9.
1*

10
7

1.
14

*1
0
8

5.
2*

10
8

5.
5*

10
8

10
9

1.
2*

10
9

1.
5*

10
9

1.
8*

10
9

EXTRUSS
MSP
PKT

Fig. 3. Comparison of the memory usage (y-axis) among EXTRUSS, MSP and
PKT for our graphs (x-axis) with their corresponding number of edges (upper
x-axis). Line interruptions corresponds to OOM or OOT experiments. Lower
is better.

c) Power Consumption and Rate per Power: The average
power consumption of EXTRUSS and PKT is around 90 Watts
and 100 Watts respectively, while MSP consumes around 45
Watts in average. We further investigated the execution profile
of MSP and we found out that it is characterized by a long
preprocessing sequential phases, which lowers the average
power consumption but also increases the execution time.

Indeed, as shown in Figure 4, MSP is not as power efficient
as EXTRUSS since it performs less work per unit of power.
The rate per watts of EXTRUSS almost always dominate the
other approaches, and for large graphs it is up to 9.5 times
more power efficient than PKT and up to 6 times more power
efficient than MSP.

B. Approximated Algorithms
In this section, we analyze the behaviour of our algorithms

APXTRUSS and HYBTRUSS, where the former approximates

Rate per Watts (Rate/W)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

epi
skit

eu05
im

db
jour

ho09
w
iki

ho11
g500

arab
it04

tw
it

gshh
frie

4*
10
5

1.
1*

10
7

1.
6*

10
7

3.
7*

10
7

4.
2*

10
7

5.
6*

10
7

9.
1*

10
7

1.
14

*1
0
8

5.
2*

10
8

5.
5*

10
8

10
9

1.
2*

10
9

1.
5*

10
9

1.
8*

10
9

EXTRUSS
MSP
PKT

Fig. 4. Comparison of the rate per watt (y-axis) among EXTRUSS, MSP and
PKT for our graphs (x-axis) with their corresponding number of edges (upper
x-axis). Line interruptions corresponds to OOM or OOT experiments. Higher
is better.

both trussness and k-trusses, while the latter computes exactly
the trussness and approximates the k-trusses. We analyze their
behaviour with respect to the exact algorithm EXTRUSS.

a) Execution Time and Memory Usage: We remark that
for graphs having less than 100M edges the algorithms
HYBTRUSS and EXTRUSS are the same. Above this threshold,
in terms of execution time, the behaviour of APXTRUSS and
HYBTRUSS is similar on big graphs and is strictly better than
the one of EXTRUSS. In the great majority of the cases, the
time needed by the APXTRUSS and HYBTRUSS is less than
half the time needed by EXTRUSS. This behaviour is shown in
Figure 5, which shows the rates: we can see that APXTRUSS
often runs at least 3 times faster than EXTRUSS, and that
APXTRUSS and HYBTRUSS behave similarly on big graphs.

Rate (edges/s)

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 8x10
6

 9x10
6

epi
skit

eu05
im

db
jour

ho09
w
iki

ho11
g500

arab
it04

tw
it

gshh
frie

4*
10
5

1.
1*

10
7

1.
6*

10
7

3.
7*

10
7

4.
2*

10
7

5.
6*

10
7

9.
1*

10
7

1.
14

*1
0
8

5.
2*

10
8

5.
5*

10
8

10
9

1.
2*

10
9

1.
5*

10
9

1.
8*

10
9

EXTRUSS
APXTRUSS
HYBTRUSS

Fig. 5. Comparison of the rate (y-axis) among EXTRUSS, APXTRUSS and
HYBTRUSS for our graphs (x-axis) with their corresponding number of edges
(upper x-axis). For graphs having less than E = 100M edges the algorithms
HYBTRUSS is exactly EXTRUSS. Higher is better.

In Figure 6, we report the memory usage, showing the
great improvement of APXTRUSS and HYBTRUSS with re-
spect to EXTRUSS. In the case of larger graphs, HYBTRUSS
seems to use always less than one fifth of the memory used
by EXTRUSS. Moreover, the improvement seems to increase
when the number of edges increase, which will allow us to
process graphs up to 25 billions edges, as we will show later.
HYBTRUSS slightly improve also over APXTRUSS.

b) Power Consumption: Eventually, we have seen that
the power consumption of EXTRUSS, APXTRUSS and HYB-
TRUSS is similar, while the rate per power of APXTRUSS and
HYBTRUSS is on average twice that of EXTRUSS.

5



Memory (GB)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

epi
skit

eu05
im

db
jour

ho09
w
iki

ho11
g500

arab
it04

tw
it

gshh
frie

4*
10
5

1.
1*

10
7

1.
6*

10
7

3.
7*

10
7

4.
2*

10
7

5.
6*

10
7

9.
1*

10
7

1.
14

*1
0
8

5.
2*

10
8

5.
5*

10
8

10
9

1.
2*

10
9

1.
5*

10
9

1.
8*

10
9

EXTRUSS
APXTRUSS
HYBTRUSS

Fig. 6. Comparison of the memory usage (y-axis) among EXTRUSS, APX-
TRUSS and HYBTRUSS for our graphs (x-axis) with their corresponding
number of edges (upper x-axis). Lower is better.

c) Rate varying approximation factor: For the sake of
completeness, in the following we report the rate of APX-
TRUSS when varying the guaranteed approximation factor c.
In particular, in Figure 7 we show for c ∈ [2, 3.1] that clearly
the rate of APXTRUSS increases when c grows. A very similar
behaviour has been clearly observed also for HYBTRUSS.

Rate of APXTRUSS varying the approximation factor c

 650000

 700000

 750000

 800000

 850000

 900000

 950000

 1x10
6

 2  2.2  2.4  2.6  2.8  3

Rate

Fig. 7. Rate (y-axis) of APXTRUSS for gshh varying c (x-axis).

C. Experiments on a Huge Graph

As a final experiment, we have considered a large crawl
of the web performed by BUbiNG [2] in 2015 starting from
europa.eu, namely gsh-2015. We ran HYBTRUSS on this
graph. We report in the following the results of our experiment.

gsh-2015
NODES 988 490 691
EDGES 25 690 705 118
TIME (s) 42 890.44
RATE (edges/s) 598 984.43
POWER (W) 58.1328
RATE PER POWER (edges/s/W) 10 303.72
MEMORY (GB) 123.17

The trusness of gsh-2015, which is computed exactly by
HYBTRUSS, is 5 204. Moreover, the trussness of edges whose
value is in the interval [523, 5 204] is guaranteed to be exact.

VII. CONCLUSIONS

In this paper we presented two algorithms: EXTRUSS for
computing the truss decomposition of a graph and HYBTRUSS
for computing the trussness and the maximum k-truss.

We can summarize our results as follows.
• Our exact algorithm EXTRUSS improves memory, time,

and power per rate with respect to the baseline. EXTRUSS
processes graphs with more than a billion of edges, while
competitors do not always terminate.

• HYBTRUSS pushes the bar further, reducing the memory
usage by a factor of ten on the biggest graphs, for finding
the trussness.

• As a result, we are able to perform the biggest known
trussness computation, finding the exact trussness of a
graph with over 25 billion edges.

Acknowledgements

We are grateful to Antonio Cisternino and Maurizio Davini
for having provided facilities from the IT center of the
University of Pisa (http://www.itc.unipi.it).

REFERENCES

[1] Jonathan W. Berry, Luke A. Fostvedt, Daniel J. Nordman, Cynthia A.
Phillips, C. Seshadhri, and Alyson G. Wilson. Why do simple algorithms
for triangle enumeration work in the real world? Internet Mathematics,
11(6):555–571, 2015.

[2] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna.
Bubing: massive crawling for the masses. In 23rd International World
Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11,
2014, Companion Volume, pages 227–228, 2014.

[3] Jonathan Cohen. Trusses: Cohesive subgraphs for social network
analysis. National Security Agency Technical Report, 16, 2008.

[4] Oded Green, James Fox, Euna Kim, Federico Busato, Nicola Bombieri,
Kartik Lakhotia, Shijie Zhou, Shreyas Singapura, Hanqing Zeng, Ra-
jgopal Kannan, et al. Quickly finding a truss in a haystack. In
High Performance Extreme Computing Conference (HPEC), 2017 IEEE,
pages 1–7. IEEE, 2017.

[5] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. Faster set intersec-
tion with SIMD instructions by reducing branch mispredictions. PVLDB,
8(3):293–304, 2014.

[6] Humayun Kabir and Kamesh Madduri. Parallel k-truss decomposition on
multicore systems. In High Performance Extreme Computing Conference
(HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

[7] MIT/Amazon/IEEE. GraphChallenge.org: Raising the bar on graph
analytic performance. https://graphchallenge.mit.edu/, 2017. [Online;
accessed 22/05/2018].

[8] Shahir Mowlaei. Triangle counting via vectorized set intersection. In
2017 IEEE High Performance Extreme Computing Conference, HPEC
2017, Waltham, MA, USA, September 12-14, 2017, pages 1–5, 2017.

[9] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael Jones,
Edward Kao, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther,
Steven Smith, William Song, et al. Graphchallenge. org: Raising the
bar on graph analytic performance. arXiv preprint arXiv:1805.09675,
2018.

[10] Thomas Schank and Dorothea Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In Experimental and
Efficient Algorithms, 4th InternationalWorkshop, WEA 2005, Santorini
Island, Greece, May 10-13, 2005, Proceedings, pages 606–609, 2005.

[11] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. Mammut:
High-level management of system knobs and sensors. SoftwareX, 6:150
– 154, 2017.

[12] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis.
Truss decomposition on shared-memory parallel systems. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–6,
Sept 2017.

6


