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Abstract. Stream processing applications became a representative work-
load in current computing systems. A significant part of these applica-
tions demands parallelism to increase performance. However, program-
mers are often facing a trade-off between coding productivity and perfor-
mance when introducing parallelism. SPar was created for balancing this
trade-off to the application programmers by using the C++11 attributes’
annotation mechanism. In SPar and other programming frameworks for
stream processing applications, the manual definition of the number of
replicas to be used for the stream operators is a challenge. In addition to
that, low latency is required by several stream processing applications.
We noted that explicit latency requirements are poorly considered on
the state-of-the-art parallel programming frameworks. Since there is a
direct relationship between the number of replicas and the latency of the
application, in this work we propose an autonomic and adaptive strat-
egy to choose the proper number of replicas in SPar to address latency
constraints. We experimentally evaluated our implemented strategy and
demonstrated its effectiveness on a real-world application, demonstrat-
ing that our adaptive strategy can provide higher abstraction levels while
automatically managing the latency.

Keywords: autonomic computing, stream processing, parallel program-
ming, adaptive degree of parallelism

1 Introduction

Stream processing applications gained even more attention in the recent com-
puting age due to the increasing use of techniques to collect data from different
sources (e.g., sensors, cameras, radars). These applications are characterized by
a continuous flow of data and high variance of input data rates [3,2]. In addi-
tion to that, due to the growing of data generation, parallel programming can
be used in stream processing applications as an option for increasing perfor-
mance. A set of programming frameworks and libraries were developed to allow
the stream parallelism exploitation on multi-core systems. Examples are Intel
Thread Building Blocks (TBB) [14], FastFlow [7,1], and StreamIt [17]. Despite



the coding abstraction introduced by these programming frameworks, they are
still not abstract enough for application programmers, which are the ones fo-
cused on developing the stream processing application [10] and which may not
be parallel programming experts.

To raise the abstraction level on stream parallel applications, the SPar [9]
DSL (domain-specific language) was designed for parallelizing stream process-
ing application in a simpler and more productive way than the state-of-the-art
alternatives [10]. SPar maintains the sequential structure of C++ codes and
programmers identify regions that can run in parallel. The programmer can an-
notate these regions by using C++11 attributes, and the SPar compiler will
parse such annotations and generate the associated parallel code. Some regions
can be executed concurrently by a number of entities called replicas. In SPar,
as well as in other state-of-the-art frameworks, the number of concurrent enti-
ties (i.e., the degree of parallelism) is static and must be manually set by the
programmer. Choosing a proper number of replicas is a complex task, since the
best choice depends both on the arrival rate of the data but also on the perfor-
mance requirements for the specific application. For example, while having more
replicas can improve the throughput, it could also increase the latency required
to process the stream items. Unfortunately at moment being, SPar and other
state-of-the-art frameworks (TBB, FastFlow, and StreamIt) do not provide any
automatic and latency-aware strategy for selecting the most appropriate number
of replicas.

In this work, we propose a strategy to automatically set, without any user
intervention, the number of replicas to be used in parallel applications with
SPar. The optimal number of replicas will be selected according to the latency
requirements of the application. The main contributions of this work are:

– An extension of the SPar DSL [9,10] with a new parallelism abstraction. This
abstraction is achieved by a strategy to automatically adapt the number of
replicas in SPar that is fully abstracted from the application programmer.
The adaptation mechanism is designed based on a feedback loop, through
which a specific latency Quality of Service (QoS) is provided. The applica-
tion is monitored at run-time and the adaptation strategy periodically takes
actions to optimize the number of replicas, considering the latency of stream
items. Consequently, the adaptation strategy concerns stream processing ap-
plications sensitive to latency.

– An experimental evaluation of the effectiveness of the strategy running on a
stream processing application.

The remainder of this paper is organized as follows: the next section presents
the scenario of this study. The need for low latency in stream processing appli-
cations is emphasized in Section 3. Section 4 presents the strategy that manages
the latency by adapting the number of replicas. In Section 5 we present our
experimental evaluation. Then, the related work is discussed in Section 6. Even-
tually, in Section 7 we draw the conclusion and discuss some possible future
directions for this work.



2 An Overview of SPar

SPar3 is a DSL for stream parallelism that offers high-level C++11 attributes
to enable automatic parallelization by means of source code annotations. The
parallel code is generated by SPar compiler through source-to-source transfor-
mations [9]. SPar relies on the FastFlow runtime, a high-level and pattern-based
parallel programming library [7,1]. SPar’s compiler generates parallel code us-
ing FastFlow library through source-to-source transformations. SPar also allows
code parallelism by simply adding annotations in the original sequential code.
By doing so, SPar relieves the programmers from the effort in dealing with ad-
vanced concepts such as scheduling, load balancing and parallelism strategies.
Since SPar is based on the C++ standard interface, application programmers
do not need to learn a new language for parallelizing their code, and can just
focus on the functional parts of their applications.

SPar provides five attributes, which we describe in the following to exploit
key aspects of stream parallelism (Listing 1.1 presents a use case example).
The ToStream attribute represents the beginning of a stream region with the
production of the stream elements. Inside the ToStream section, it is possible to
add a number of Stages, which represents different and subsequent phases of the
computation over the stream elements. The data needed by each stage can be
indicated by using the Input attribute. Similarly, by using the Output attribute,
the programmer can specify the variables representing the data produced by the
stage.

Each stage can be executed by multiple threads. To define how many threads
(replicas) should be used for a stage, the Replicate attribute can be used. As
SPar currently supports stateless stream operators, each replica is independent
from the others and they can operate in parallel without any need of synchro-
nization among them. During the source-to-source compilation process, some
flags can be specified to customize the behaviour of the generated code. For ex-
ample, to change the way in which the elements are scheduled to the replicas or
to preserve the order of the stream elements among different stages [9].

In Listing 1.1, we show a trivial example of a sequential code enhanced by
means of SPar annotations. This application generates the stream, applies a
function over each stream element, and then outputs the results. In Figure 1,
we can visualize the association between the different parts of the code and the
execution unit, which will be executed in parallel.

1 [ [ spar : :ToStream ] ] while (1 ) {
2 i = read i tem ( ) ;
3 [ [ spar : : Stage , spar : : Input ( i ) , spar : :Output( i ) , spar : : Replicate (n) ] ]
4 {
5 i = f i l t e r i n g ( i ) ;
6 }
7 [ [ spar : : Stage , spar : : Input ( i ) ] ] {
8 wr i t e i t em ( i ) ;
9 }

10 }
Listing 1.1. SPar example.

3 SPar home page: https://gmap.pucrs.br/spar



Fig. 1. Farm - communication queues inside SPar runtime.

In this specific example, n replicas are activated (which corresponds to B.1
to B.n in Figure 1), each of which receive data from the previous stage and sends
produced results to the subsequent stage. Communications between stages oc-
cur through shared queues. By default, SPar schedules the stream items to the
workers with a round-robin policy. However, other scheduling strategies can be
used and this behaviour can be customized during the source-to-source compi-
lation process. For example, to improve load balancing, it is possible to schedule
stream items in an on-demand fashion so that an element is scheduled to a
specific worker when it is not already processing another element.

3 The impact of parallelism on latency

In this section we describe the relationship between the number of replicas and
the performance in a stream processing application. We consider the Lane Detec-
tion application [11], a video processing application used to identify road lanes
in videos recorded, for example, by self-driving vehicles. This application has a
similar structure to that shown in Figure 1 (3 stages) where one stage is repli-
cated by a number of times. In the experiments, we used as input a video file
(5.25MB - 640x360 pixels) to simulate a typical execution of a video stream-
ing application. We execute this application on a multi-core machine composed
by 12 cores with 2-way Simultaneous MultiThreading (SMT) for a total of 24
hardware threads.

Firstly, we show in Figure 2(a) the throughput of the application (i.e. how
many stream elements per second are processed) for different number of replicas.
The number of replicas is statically chosen and never modified during the exe-
cution. These results prove that the use of SMT is beneficial for the throughput
of this kind of application since the best throughput is obtained by using 22
replicas.

As shown in Figure 2(b), increasing the number of replicas may have detri-
mental effects on the latency of the application. It is worth noting that a sig-
nificant increase in the latency (as well as a decrease in the throughput) can be
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Fig. 2. Lane Detection characterization.

observed when more than 10 replicas are used. Moreover, it is possible to note
a significant increase in the oscillation of the latency when using more replicas.
These effects are caused by the contention between stages running on two SMT
cores corresponding to a same physical core.

There can be seen a correlation between throughput and latency. Achieving a
high throughput using many replicas tends to increase the latency. On the other
hand, using too few replicas decreases the throughput and latency. Consequently,
a balance between the two performance goals is required. The challenge is that
a high throughput is commonly pursued, and at the same time low latency may
also be necessary. In this work, the goal is to manage latency in replicated stages.

4 Autonomous Degree of Parallelism

In the previous section we have seen how the number of replicas affects the la-
tency of stream items. Responding in real-time according to latency constraints
and the actual rates cannot be done manually by the programmer. As a conse-
quence, we are abstracting from programmers the aspects related to the number
of replicas and latency for latency sensitive applications.

We implemented a strategy in the SPar’s runtime that monitors and manages
the latency of stream items by adjusting the number of replicas. Figure 3 shows
the architecture we use to adapt the number of replicas considering the moni-
tored latency of stream items. This adaptive mechanism is based on a feedback
loop [13] that at each control step, monitors the application and takes decision
so to optimize the execution of the application at the next step. By doing so, it
is possible to be reactive to select the best number of replicas even in presence
of workload fluctuations, which is common in data streaming applications. The
implemented strategy works on a single replicated stage. However, this strategy
can also work in more complex compositions formed by several replicated stages,
although different strategies would need to be handled by other means.



Fig. 3. Latency - Regulator and Monitor.

A monitor routine is attached to the last stage of the application. It mon-
itors the latency of each stream element and calculates the average latency of
the elements processed in each iteration of the feedback loop. The latency cal-
culated by the monitor is read by a regulator connected to the first stage of the
application. The regulator, by using the information collected by the monitor,
decides which actions to take at the next step of the feedback loop in order to
enforce the latency required by the user.

In Algorithm 1 we show the regulator used in this work. It calls the monitor
for the current latency and when it is higher than the target one, the number
of replicas is reduced. On the other hand, the regulator increases the number of
replicas if the latency is significantly lower than the constraint. The part that
dynamically regulates the parallelism was implemented using low-level calls to
the FastFlow runtime library for changing the status of the replicas (active,
suspended). The regulator changes the number of replicas at run-time without
restarting the application. In order to avoid oscillation in the number of replicas,
a threshold value is used so that the number of replicas is not increased when the
latency is lower but close to the constraint. This strategy of the regulator tries
to maximize throughput while the latency constraint is met, pursuing a balance
between throughput and latency requirements.

Algorithm 1 Parallelism Regulator

1: procedure Regulator( )
2: while true do
3: Sleep(timeInterval) . Wait until the next iteration
4: if Latency > Constraint then . Latency is too high
5: SuspendReplica()
6: else if Latency < Constraint− Threshold then
7: WakeUpReplica()



By considering the example in Figure 3, if executed on a machine with N
cores, we would activate at most N − 2 replicas. Indeed, as we shown in Fig-
ure 2(b), when the replicas share the computing resources with other stages
of the application, this could lead to detrimental effects for both latency and
throughput of the application. The regulator we shown in Algorithm 1 assumes
that at most one stage is replicated. If more stages are replicated, the strategy
should find the best number of replicas for each of them. We will consider this
scenario in our future work. Moreover, the implemented strategy works on state-
less computations. In case of a stateful scenario, the internal state would need
to be handled manually.

An important part of the configuration is the scaling factor (SF), which is
how many threads/replicas are added or remove when adjusting the degree of
parallelism. In the literature, the most common SF value is 1 threads/replicas.
Our implementation is tested with SF of 1 and 2, thus in lines 5 and 7 of
Algorithm 1, 1 or 2 replicas can be suspended or awaken on each iteration.

Another relevant aspect is how often the algorithm should consider the pos-
sibility of adding/removing replicas. The most common approach is time-driven
that, at fixed time intervals, it decides if changing the number of active replicas.
The choice of the time interval is critical and depends from the application. In
general, a shorter time interval allows to react quickly to changes in the ap-
plication. In [8], [4], [15], the authors used time intervals ranges from 0.1 to 5
seconds. For our scenario, we consider 1 second as the default time interval.
We experimentally saw that this configuration avoids too many changes in the
number of replicas, but also maintain a correct level of sensitivity to application
fluctuations. The impact on latency caused by the different choices of the time
interval is left to be evaluated in the future.

5 Results

Stream processing applications may run only pursuing the maximum through-
put without considering the latency. However, it is not suitable for those latency
sensitive applications that need to rapidly return their results. At the same time,
using a minimal number of replicas for reducing the latency tends to result in
a low throughput as well as inefficient usage of computational resources. There-
fore, our regulator tries to improve the throughput by increasing the number
of replicas when the latency is below the constraint. We tested our strategy for
latency with the same application and input used in Section 3. In this experi-
ments, the scaling factor (SF) of the parallelism regulator was 1 or 2, meaning
that on each reconfiguration one or two replicas can be activated or suspended.
Also, we used a control step of 1 second, which is a time interval sensitive enough
to react without compromising the overall execution. Another aspect tested is
related to the thresholds of the latency constraint presented in Section 4. In our
scenario, the best thresholds were 10% and 20%.

In Figure 4, we show on the left side the throughput and latency of the
application, while on the right side we plot the number of replicas used during



the execution. In this experiment, we set a latency constraint of 180 milliseconds
with a 10% threshold. As we can see from the Figure 4, the number of replicas is
reduced when the latency increases, and the number of replicas is changed several
times due to oscillations in the input video. Comparing the configurations, we
observed that SF of 2 reacts faster to changes and increases the throughput at
the price of more latency violations.
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Fig. 4. Threshold 10% - Latency constraint of 180 ms (Left) and replicas used (Right).

In Figure 5 is presented an experiment with the same latency constraint but
using a threshold of 20%. In this experiment, fewer latency violations occurred
because the threshold of 20% is more conservative, which avoids adding more
replicas when the latency is close to the constraint. Comparing thresholds 10%
and 20%, we noted that the effectiveness of threshold 20% in managing the
latency did not decrease the application throughput significantly. Moreover, SF
of 1 is more stable by avoiding to overreact in the face of latency oscillations
caused by the application workload fluctuations.
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Fig. 5. Threshold 20% - Latency constraint of 180 ms (Left) and replicas used (Right).

An experiment tolerating higher latency (200ms) is shown in Figures 6 and 7.
Despite the different constraint, the performance trend from the configurations is



similar. The threshold of 10% resulted in too many re-configurations that caused
latency violation by using too many replicas. Thanks to fewer latency violations,
SF of 1 was most suited than SF of 2. Considering the SF of 1, that yielded the
best trade-off between latency and throughput, the results revealed a similar
throughput regarding the thresholds 10% and 20%. Using the threshold of 20%,
it only violated the latency constraint in the last seconds of the execution. This
event is not caused by the adaptive mechanism but by the application, and it also
occurred with a static number of replicas as seen in Figure 2(b). Consequently,
the adaptive mechanism was unable to respond because the latency violations
occurred right before the application termination. Considering these results, we
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Fig. 6. Threshold 10% - Latency constraint of 200 ms (Left) and replicas used (Right).

can highlight that latency-sensitive stream processing applications with fluctua-
tions perform better using SF of 1 and higher thresholds. In fact, an acceptable
performance depends on the constraints and on the user requirements. Often in
stream processing applications, a high throughput does not mean that users will
actually have a better experience [6]. Consequently, it is important to support
custom configurations (e.g., throughput, latency) and to adapt the application
at run-time while maintaining high-level parallelism abstractions.
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6 Related Work

In this section, we present and contextualize the related studies that present
efforts for autonomous properties in the stream processing scenario. De Sensi et
al. [6], [5] propose Nornir, a simple programming interface and runtime support
for dynamically and automatically control the resources allocated to the appli-
cation according to the user needs. Nornir enables the application to change
number of cores, clock frequency and placement of threads during run-time. It
also aims to satisfy bounds regarding power consumption and throughput, even
in presence of changes in the input rate, in the application phases, or external
interference. Nornir is validated using simulations and real-world benchmarks
from the PARSEC suite. In SPar, we do not focus on power-aware computing.
With respect to Nornir, we provide the possibility to express latency constraints
by adapting the number of replicas.

De Matteis et al. [4] present elastic properties for data stream processing
regarding performance (latency) and energy efficiency (number of cores and fre-
quency). Elasticity support is stated as a solution for an efficient usage according
to QoS requirements and so reducing the operating cost. The proposed model
was implemented in the FastFlow runtime, which is a framework for stream pro-
cessing targeting shared-memory multi-core architectures and also used by our
target SPar runtime. In this work, the authors use a controller thread to monitor
the application and to change the number of replicas and the clock frequency of
the CPUs when needed.

In Gedik et al. [8], the authors show aspects related to parallelism in pipeline
stages and they presented the motivation and challenges for elastic degree of
parallelism during run-time. They proposed an elastic auto-parallelization solu-
tion, which adjusts the number of replicas aiming to achieve high throughput
without wasting computational resources. Elasticity is implemented by requiring
the programmer to define a threshold and a congestion index in order to decide
whether to add or not more replicas.

Heinze et al. [12] emphasizes the complexity involved in determining the right
point to increase or decrease the degree of parallelism. The authors investigated
issues and requirements related to elasticity in the data stream for auto-scaling
(scaling in or out) and they manage latency in a distributed system by keeping
the system utilization in a range (min, max).

Selva et al. [16] show an approach related to the adaptation in run-time for
streaming languages. The StreamIt language is extended to allow the program-
mer to specify the desired throughput and the runtime controls the execution.
Moreover, it was implemented an application and system monitor that checks the
throughput and system bottleneck, respectively. Using the implemented strategy,
the system can adapt the execution based on previous observations.

Our research differs from existing works because we provide autonomous de-
gree of parallelism and latency-aware management for the SPar DSL, shown in
Section 2. De Sensi et al. [6] and De Matteis et al. [4] used the FastFlow frame-
work to implement autonomic management of energy consumption on parallel
applications. Besides providing a new strategy for implementing the latency-



aware degree of parallelism, we integrated our strategy in the SPar’s runtime
system, adding therefore a new parallelism abstraction for its users.

We have a different scenario and target architecture compared to Gedik et al.
[8] and Heinze et al. [12] because they focused on distributed systems while SPar
targets multi-core environments. While Selva et al. [16] optimize the placement
and throughput in StreamIt, we abstract parallelism complexities and focus on
latency constraints for the SPar DSL. Moreover, the available solutions do not
focus on parallelism abstractions and can be complicated to be used even for
experts in parallel programming.

There is a demand to relieve end-users from the need to set a degree of paral-
lelism and to enable their applications to run transparently without the manual
intervention. We aim to free programmers from defining the degree of parallelism
by implementing a strategy that supports an adaptive degree of parallelism in
any application sensitive to latency parallelized by using SPar.

7 Conclusion

In this study, we extended SPar with a new parallelism abstraction. This was
accomplished by implementing a strategy that adapts, without any program-
mer intervention, the number of replicas in order to have a latency lower than
that specified by the application programmer. This is particularly useful for
stream processing applications, which are characterized by fluctuations in the
input rates. Our strategy monitors the execution and adapts the degree of par-
allelism. The manual, complex, and time-consuming definition of the degree of
parallelism is no longer required in SPar. Experimental results demonstrated
the effectiveness of our solutions when adjusting the number of replicas at run-
time. Although the result trends are expected to occur in different scenarios, the
presented results are limited to the tested application and environment.

In this study we proposed a strategy to control applications where only one
stage is replicated. In the future, we plan to extend this work to consider ap-
plications with a more complex structure. Moreover, we aim to evaluate our
latency-aware approach in other latency sensitive applications, specially those
running for long time periods. Eventually, we will improve the adaptive strategy,
for example, by using proactive rather than reactive approaches, to minimize the
number of times the number of replicas is changed at run-time.
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