
33

Bringing Parallel Pa�erns out of the Corner:
the P3ARSEC Benchmark Suite

DANIELEDE SENSI, TIZIANODEMATTEIS,MASSIMOTORQUATI, GABRIELEMENCAGLI,

and MARCO DANELUTTO, Department of Computer Science, University of Pisa

High-level parallel programming is an active research topic aimed at promoting parallel programming
methodologies that provide the programmer with high-level abstractions to develop complex parallel so�ware
with reduced time-to-solution. Pa�ern-based parallel programming is based on a set of composable and
customizable parallel pa�erns used as basic building blocks in parallel applications. In recent years, a
considerable e�ort has been made in empowering this programming model with features able to overcome
shortcomings of early approaches concerning �exibility and performance. In this paper we demonstrate that
the approach is �exible and e�cient enough by applying it on 12 out of 13 PARSEC applications. Our analysis,
conducted on three di�erent multi-core architectures, demonstrates that pa�ern-based parallel programming
has reached a good level of maturity, providing comparable results in terms of performance with respect
to both other parallel programming methodologies based on pragma-based annotations (i.e. OpenMP and
OmpSs) and native implementations (i.e. Pthreads). Regarding the programming e�ort, we also demonstrate
a considerable reduction in Lines-Of-Code (LOC) and Code Churn compared with Pthreads and comparable
results with respect to other existing implementations.

CCS Concepts: •Computing methodologies →Parallel programming languages;

Additional Key Words and Phrases: Parallel Pa�erns, Algorithmic Skeletons, PARSEC, Multi-core Programming,
Benchmarking

ACM Reference format:
Daniele De Sensi, Tiziano De Ma�eis, Massimo Torquati, Gabriele Mencagli, and Marco Danelu�o. 2017.
Bringing Parallel Patterns out of the Corner:
the P3ARSEC Benchmark Suite. ACM Transactions on Architecture and Code Optimization 14, 4, Article 33
(October 2017), 26 pages.
DOI: 10.1145/3132710

©ACM, 2017. �is is the author’s version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. �e de�nitive version was published in ACM Transactions on Architecture and
Code Optimization (TACO), Vol. 14, Issue 4, (October 2017) h�p://doi.acm.org/10.1145/3132710.
�is paper is an extension of the conference paper: “P3ARSEC: Towards Parallel Pa�erns Benchmarking” appeared in the
Proceedings of the ACM Symposium on Applied Computing [21]. We extended this work by: i) modeling and implementing
additional seven applications by using parallel pa�erns (were �ve in [21]); ii) implementing four of these applications
with another framework (SkePU); iii) comparing our approach with the OmpSs programming model; iv) adding other
programmability metrics to our analysis; v) testing our work on two additional and completely di�erent architectures.
�is work has been partially supported by the EU H2020-ICT-2014-1 project RePhrase (No. 644235).
Authors mail addresses: {desensi, dema�eis, torquati, mencagli, marcod}@di.unipi.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. XXXX-XXXX/2017/10-ART33 $15.00
DOI: 10.1145/3132710

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

http://doi.acm.org/10.1145/3132710

33:2 D. De Sensi et al.

1 INTRODUCTION
Nowadays multi-core systems have become commonplace. We can �nd Chip Multi-Processors
(CMPs) in almost any device, from wearable smart sensors to high-end servers. While the advent
of CMPs has alleviated several problems of single-core processors (e.g., the so-called memory
wall [59]) it has raised the issue of the programmability wall [16] that previously characterized the
development of parallel so�ware targeting traditional HPC platforms.

�e standard approach to program CMPs relies on thread-level parallelism where data sharing is
coordinated by synchronization primitives. �is approach leaves a large degree of freedom to the
programmer when coding applications, allowing low-level optimizations that may increase the
performance but also the lines of code, thus reducing code portability and maintainability.

To face these issues, an approach consists in using high-level parallel pa�erns that the programmer
composes and nests to build parallel applications. Each pa�ern applies a parallelism paradigm to
solve recurrent problems [48, 49]. Frameworks supporting this vision are for example Microsoft
PPL [12], FastFlow [22], SkePU [30] and Delite [10]. �e main drawback of this programming
model is the potential lower �exibility o�ered to the application developer. In fact, parts of the
application that could be parallelized might not exactly match any available pa�ern. For these
reasons, some recent parallel frameworks, such as Intel TBB [49], adopt a sort of hybrid approach,
where besides some pre-de�ned pa�erns (e.g., pipeline, parallel-for, reduce, scan) they o�er support
to the execution of generic graphs of tasks by respecting their precedence relations.

Besides the programmability advantage, a focal aspect is to precisely assess which is the �exibility
and performance gap observed when using high-level methodologies. An interesting work that
tries to provide a �rst answer for task-based programming models is presented in [17]. �e authors
showed that the OmpSs porting of a signi�cant subset of the PARSEC benchmark suite [6] does not
provide substantial performance degradation with respect to native Pthreads implementations,
while reducing the programming e�ort measured in terms of lines of code. Our contribution with
this work is to provide a similar and deeper analysis for pa�ern-based frameworks, showing that
they are at least as expressive, in exposing the parallel structure of the application, as the task-based
or pragma-based approaches. As far as we know, this is the �rst a�empt to provide a thorough
analysis of the pa�ern-based methodology. Our contributions can be summarized as follows:

• We show that 12 out of 13 PARSEC benchmarks can be modeled as composition of parallel
pa�erns. Our analysis also shows that a relatively small number of parallel pa�erns are
su�cient to model complex real-world applications such as the ones in PARSEC;
• We implemented all the pa�ern-based versions of the PARSEC benchmarks using the

parallel pa�erns o�ered by the FastFlow framework [22]. A subset of these benchmarks
have also been implemented in SkePU [32];
• We study the programming e�ort required to implement the parallel versions measured

using two metrics: Lines-Of-Code (LOC) and Code Churn [51]. Despite a shorter code does
not necessarily imply a simpler or be�er code, evaluating the programming e�ort in an
objective way is a di�cult task and no existing metric is universally accepted. We decided
to use LOC and code churn since they are o�en used in several research works as proxy
metrics to evaluate programmability [17, 51, 58]. �e pa�erned implementations achieve
an average LOC reduction of 26% (in both FastFlow and SkePU) compared with the native
Pthreads implementation (and up to a maximum of 87% for some speci�c benchmarks).
We also compared such metrics with those of the OpenMP and TBB implementations
provided by PARSEC and with the OmpSs implementations described in [17];
• We compare on three di�erent multicore systems the performance of the pa�ern-based

implementations with the one of native Pthreads implementations, with OpenMP and TBB

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:3

versions provided by PARSEC (when available) and with OmpSs task-based parallelizations.
�e FastFlow and SkePU implementations obtain an average gain of 14% and 7% with
respect to Pthreads (up to a maximum of 42%), and comparable results with respect to the
other implementations.

To create a new benchmark suite for pa�ern-based frameworks, the source code of all the
implemented benchmarks is made publicly available under the name P3ARSEC– Parallel Pa�erns
PARSEC1.

�e rest of this paper is organized as follows: Sect. 2 introduces the PARSEC benchmark suite
and the pa�ern-based methodology. Sect. 3 presents the used pa�erns and the pa�ern-based
implementation of the P3ARSEC benchmarks. Sect. 4 provides details of the performance and
programmability analysis presenting experimental results. Sect. 5 provides the related work and
eventually Sect. 6 draws the conclusions of this work.

2 BACKGROUND
In this section we introduce the background of this work. First, we describe the PARSEC benchmark
suite. �en, we will provide a brief review of recent methodologies and frameworks based on
pa�ern-based parallel programming.

2.1 The PARSEC Benchmark Suite
PARSEC [6] (Princeton Application Repository for Shared-Memory Computers)2 is a collection of
various multi-threaded programs with high system requirements that has been used in the past for
stressing shared-memory architectures [54]. One of the most interesting aspects of this benchmark
suite is that it covers a wide set of application domains such as streaming, scienti�c computing,
computer vision, data compression and so forth. For this reason, the PARSEC suite has been recently
used to assess the expressive power of emerging parallel programming frameworks [17].

2.1.1 Applications Taxonomy. PARSEC consists of 13 programs from di�erent areas of computing.
Each application is provided with several input sets for each benchmark. �ree datasets, with
di�erent sizes, target the execution on simulators (i.e. sim-small, sim-medium, sim-large), while the
native dataset is representative of a realistic execution scenario of the application.

From the parallel programming perspective, PARSEC applications are of great interest for testing
frameworks because they have di�erent memory access behaviors, data sharing pa�erns, amount
of parallelism, computational granularity, and synchronization frequency. Table 1 reports the
o�cial name of the benchmarks, their parallelism model and the computational grain according
to PARSEC documentation. Moreover, we show the o�cial parallel versions released within the
PARSEC suite that we use as reference implementations in this work.

Most of the applications belong to the data parallelism model, where the computation is per-
formed on large data structures logically partitioned among multiple threads. Stream parallelism
characterizes applications where a large sequence of data items are processed by a chain of threads
that execute distinct computation phases on di�erent items in parallel and in a pipeline fashion. �e
case of canneal is an example of applications that do not straightforwardly follow any common
parallelism paradigm (in the table it is referred to as unstructured).

1�e code of P3ARSEC is publicly available at h�ps://github.com/ParaGroup/p3arsec. Release v1.0 is used in this paper.
2In this paper we refer to the PARSEC version 3.0: h�p://parsec.cs.princeton.edu/overview.htm

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

https://github.com/ParaGroup/p3arsec
http://parsec.cs.princeton.edu/overview.htm

33:4 D. De Sensi et al.

Benchmark Domain Parallelism Parallel Versions

Model Grain Pthreads OpenMP Intel TBB

blackscholes Financial Analysis data parallelism coarse 3 3 3

bodytrack Computer Vision data parallelism medium 3 3 3

canneal Engineering unstructured �ne 3 7 7

dedup Enterprise Storage stream medium 3 7 7

facesim Animation data parallelism coarse 3 7 7

ferret Similarity Search stream medium 3 7 7

fluidanimate Animation data parallelism �ne 3 7 3

freqmine Data Mining data parallelism medium 7 3 7

raytrace Computer Vision data parallelism medium 3 7 7

streamcluster Data Mining data parallelism medium 3 7 3

swaptions Financial data parallelism coarse 3 7 3

vips Media Processing data parallelism coarse 3 7 7

x264 Media Processing stream coarse 3 7 7

Table 1. Classification and characteristics of the PARSEC v3.0 applications.

2.2 Parallel Pa�ern-based Approaches
Parallel design pa�erns have been envisioned as a viable solution to improve the quality and the
e�ciency of parallel so�ware development while reducing the complexity of program parallelization
and enhancing performance portability [48].

Parallel pa�erns are schemes of parallel computations that recur in many real-life algorithms and
applications. Each of them usually has one or more well-known implementations of communication,
synchronization and computation models. �e use of parallel pa�erns in the development of
applications provides several advantages both concerning time-to-solution as well as concerning
the automatic or semi-automatic applicability of di�erent optimization strategies (e.g., like the ones
proposed in [15, 34, 53]). �is last aspect is usually manually enforced in non-pa�ern-based parallel
programming models such as MPI and Pthreads. Furthermore, some research works have recently
proposed autonomic management strategies of non-functional concerns like performance and
energy consumption for pa�ern-based approaches [23, 47], by using control knobs like concurrency
thro�ling and Dynamic Voltage and Frequency Scaling (DVFS) [24].

Algorithmic skeletons [18] were developed independently of parallel pa�erns to support pro-
grammers with the provisioning of standard programming language constructs that model and
implement common, parametric, and reusable parallel schemes. Algorithmic skeletons may be
considered as a practice of implementation of parallel design pa�erns. Combinations of parallel
design pa�erns and algorithmic skeletons are used in di�erent parallel programming frameworks
such as Microso� PPL [12] and Intel TBB [49] as well as in niche pa�ern-based research frameworks
such as SkePU [32], Muesli [31], FastFlow [22], SkeTO [29], SkelCL [55], Skandium [44] and OSL
[43] just to mention a few of them. Other frameworks such as Google MapReduce [25] are instead
built around a single powerful pa�ern.

To raise the level of abstraction in parallel so�ware development for speci�c application domains,
some research works proposed DSLs (Domain Speci�c Languages) built on top of pa�ern-based
frameworks [10, 41, 56]. �eir main aim is to help the domain experts to easily prototype di�erent
parallel variants of their code and to introduce parallel runtime optimizations in a more slective
way. A similar approach, which leverages the new C++1x features, consists in annotating the
sequential code with C++ a�ributes in order to introduce parallel pa�erns in speci�c regions of
code (usually compute-intensive kernels). �en, a source-to-source compiler is responsible for

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:5

translating the annotated C++ code into a parallel code linked to the proper pa�ern-based runtime
library [20, 37].

3 PARALLEL PATTERN-BASED PARSEC
Pa�ern-based frameworks provide a set of parallel pa�erns that solve recurrent problems in parallel
programming. Some notable examples are: map, reduce, pipeline, farm, divide-and-conquer, stencil,
parallel-for. In this section we review the parallel pa�erns that we have used in the development of
P3ARSEC. �en, we provide some examples of pa�erned code wri�en in FastFlow and SkePU,
to give an idea of the interface and the programming abstractions o�ered by some of the existing
frameworks. Finally, we describe for each PARSEC application both the original parallel design
and our pa�ern-based one. In some cases, we outline possible alternative compositions and
optimizations of pa�erns.

3.1 A Small Catalog of Parallel Pa�erns
Several past papers have described parallel pa�erns by providing a formal semantics that allows
pa�erns to be composed and nested according to speci�c rules [2, 13]. Rewriting rules have been
derived to transform a pa�ern expression into an equivalent one (i.e. a di�erent pa�ern composition
that preserve the computation correctness), possibly able to achieve be�er performance. Such
analysis and formalism is out of the scope of this paper. In this part we recall the pa�erns that we
have used in the implementation of P3ARSEC. To represent the pa�erns, we use a synthetic syntax
that simpli�es the description of alternative implementation schemes.

Sequential (seq). �is pa�ern encapsulates a portion of the “business logic” code of the applica-
tion that can be used in this way as a parameter of other more complex pa�erns. �e implementation
requires to wrap the code in a function f : α → β with input and output parameter types α and
β , respectively. For each input x : α the pa�ern (seq f) : α → β applies the function f on
the input by producing the corresponding output y : β such that y = f (x). �e pa�ern can
also be applied when the input is a stream, i.e. a sequence possibly of unlimited length of items
with the same type. Let α stream be a sequence (x1,x2, . . . ,) where xi : α for any i . �e pa�ern
(seq f) : α stream→ β stream applies the function f to all the items of the input stream, which
are computed in their strict sequential order, i.e. xi before x j i� i < j.
Pipeline (pipe). �e pa�ern works on an input stream of type α stream. It models a composition

of functions f = fn ◦ fn−1 ◦ . . . ◦ f1 where fi : αi−1 → αi for i = 1, 2, . . . ,n. �e pipeline pa�ern is
de�ned as (pipe ∆1, . . . ,∆n) : α0 stream→ αn stream. Each ∆i is the i-th stage, that is a pa�ern
instance having input type αi−1 stream and output type αi stream. For each input item x : α0
the result out of the last pipeline stage is y : αn such that y = fn(fn−1(. . . f1(x) . . .)). �e parallel
semantics is such that stages process in parallel distinct items of the input stream, while the same
item is processed in sequence by all the stages.

From an implementation viewpoint, a pipeline of sequential stages is implemented by concurrent
activities (e.g., threads) passing items through cooperation mechanisms (e.g., via shared bu�ers).

Task-farm (farm). �e pa�ern computes the function f : α → β on an input stream α stream

where the computations on distinct items are independent. �e pa�ern is de�ned as (farm ∆) :
α stream→ β stream where ∆ is any pa�ern having input type α stream and output type β stream.
�e semantics is such that all the items xi : α are processed and their output items yi : β where
yi = f (xi) computed. From the parallel semantics viewpoint, within the farm the pa�ern ∆ is
replicated n ≥ 1 times (n is a non-functional parameter of the pa�ern called parallelism degree)
and, in general, the input items may be computed in parallel by the di�erent instances of ∆.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:6 D. De Sensi et al.

In case of a farm of sequential pa�ern instances, the run-time system can be implemented by a
pool of identical concurrent entities (worker threads) that execute the function f on their input
items. In some cases, an active entity (the emi�er thread in FastFlow [22]) can be designed to assign
each input item to a worker, while in other systems the workers directly pop items from a shared
data structure. Output items can be collected and their order eventually restored by a dedicated
entity (a collector thread) that produces the stream of results.

Master-worker (master-worker). �is pa�ern works on a collection (α collection) of type α ,
i.e. a set of data items {x1,x2, . . . ,xn} of the same type xi : α for any i . �ere is an intrinsic
di�erence between a stream and a collection. While in a collection all the data items are available
to be processed at the same time, in a stream the items are not all immediately available, but they
become ready to be processed spaced by a certain and possibly unknown time interval. �e pa�ern
is de�ned as (master-worker ∆, p) : α collection→ α collection where ∆ is any pa�ern working
on an input type α and producing a result of the same type, while p is a boolean predicate. �e
semantics is that the master-worker terminates when the predicate is false. Di�erent items can
be computed in parallel within the master-worker.

A master-worker of sequential pa�ern instances consists of a pool of concurrent workers that
perform the computation on the input items delivered by a master entity. �e master also receives
the items back from the workers and, if the predicate p is true, reschedules some items.
Map (map). �e pa�ern is de�ned as (map f) : α collection → β collection and computes a

function f : α → β over all the items of an input collection whose elements have type α . �e
output produced is a collection of items of type β where each yi : β is yi = f (xi). �e precondition
is that all the items of the input collection are independent and can be computed in parallel.

�e runtime of the map pa�ern is similar to the one described for the farm pa�ern. �e di�erence
lies in the fact that since we work with a collection, the assignment of items to the worker entities
can be performed either statically or dynamically. Depending on the framework, an active entity
can be designed to assign input items to the workers according to a given policy.

Map+reduction (map+reduce). It is de�ned as (map+reduce f , ⊕) : α collection → β , where
f : α → β and ⊕ : β × β → β . �e semantics is such that the function f is applied on all the items
xi of the input collection (map phase). �en, the �nal result of the pa�ern y : β is obtained by
composing all the items yi of the output collection result of the map phase by using the operator ⊕,
i.e. y = y1 ⊕ y2 ⊕ . . . ⊕ yn .

A typical implementation is the same of the map where the reduction phase can be executed
serially, once all the output items have been produced, or in parallel according to a tree topology
by exploiting additional properties on the operator ⊕ (i.e. if it is associative and commutative).

Composition (comp). �is pa�ern is the composition of two pa�ern instances that work either
on single items, on streams or on collections. In case of collections, the composition is (comp∆1, ∆2) :
α collection→ γ collection where ∆1 is any pa�ern (e.g., map or master-worker) working on input
α collection and that produces an output β collection, while ∆2 is a pa�ern working with input
type β collection and transforming it into a type γ collection. �e semantics is that the �rst pa�ern
is executed, and when its execution has �nished (i.e. all the items in the input collection have been
computed) the second pa�ern can be started by processing the collection produced by the �rst
pa�ern. In case of streams, the composition semantics is applied on an item-by-item basis, i.e. each
item in the input stream is processed �rst by ∆1 and then by ∆2 before starting to compute the next
item.

�e run-time system of a pa�ern-based framework must ensure that the two pa�erns within the
comp instance are executed serially. In the case of collections, a barrier can be added a�er the call
to the �rst pa�ern and before starting the second one.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:7

Iterator (iterator). In its basic form this pa�ern iterates a pa�ern ∆ working on a single input
item (seq or comp) or on a collection of items (map, master-worker). In case of collections, the
pa�ern is de�ned as (iterator ∆, p) : α collection→ α collection, where p is a boolean predicate.
�e inner pa�ern ∆ is iterated until the predicate is true.

At the implementation level, the runtime executes the pa�ern for a certain number of times
determined statically or at run-time. At the end of each iteration there is an implicit barrier, since
the output collection computed at iteration i − 1 may be used as input for the iteration i .

3.2 Examples of Parallel Pa�ern-based Code
Over the last twenty years, many parallel programming models and frameworks based on parallel
pa�erns and algorithmic skeletons have been proposed. In [35] can be found a review of several of
them. Some of these frameworks, as P3L [5], ASSIST [57] and SAC [36], provide a new language
used to introduce pa�ern abstractions already in the early phases of the so�ware development
process. More recent approaches like FastFlow [22], SkePU [32], GrPPI [26], SPar [37] and PACXX
[38], rely on new features of modern C++ language. Pa�erns are introduced by instantiating class
objects at any place in the code or by using suitable C++11 a�ributes as in SPar. In this work we
decided to use FastFlow and SkePU.
FastFlow [22] is a C++11 header-only template library that allows the programmer to build

directed graphs of streaming computations. It provides the application programmer with a va-
riety of ready-to-use stream and data parallel pa�erns than may be freely composed and cus-
tomized to implement complex parallel applications. �e pa�erns provided are: pipeline, farm, map,
map+reduce, master-worker, feedback-loop and sequential. Pa�erns are implemented with threads
which communicate by using non-blocking lock-free synchronization, enabling e�cient processing
in high-throughput streaming scenarios [3]. Parallel pa�erns can be used by instantiating proper
objects from the FastFlow classes. �e framework has been originally designed to target shared
memory multi/many cores with two main goals in mind: performance and programmability.
SkePU [30] provides a multi-backend framework for heterogeneous parallel systems. �e

framework is composed by a source-to-source compiler and a runtime library. Data-parallel
pa�erns are implemented as C++ objects whose instances with their input/output arguments are
called skeletons. As the SkePU compiler recognizes a C++ construct that represent a data-parallel
skeleton, it can rewrite the source code and generate backend-speci�c versions of the user functions
in order to execute the skeleton on the selected backend. SkePU version 2.0 provides backends for
sequential C++, multi-core OpenMP, GPU with CUDA and OpenCL. �e following pa�erns are
provided: Map, Reduce, MapReduce, MapOverlap and Scan.

�e iterator pa�ern is not natively provided by these frameworks. However, by knowing that
the pa�ern is iterated, we can still exploit this design information to optimize the code, for example
by keeping the threads alive between two successive iterations of the pa�ern instead of destroying
and creating them at each iteration.

Overall, we decided to use these frameworks because both of them are well-known and currently
maintained projects. In addition to this, FastFlow o�ers all the required pa�erns (i.e. stream
and data parallel ones), while SkePU represents a valid alternative for data-parallel skeletons.
Implementations of the PARSEC benchmarks with other pa�ern based frameworks are le� as
possible future work.

As examples of parallel pa�ern-based code, we present in the following the implementation of
two PARSEC benchmarks: i) Ferret that is a stream-parallel benchmark and, ii) Swaptions that is
a data-parallel benchmark. �e �rst one is implemented using the FastFlow streaming pa�erns,
while Swaptions has been implemented with the SkePU map pa�ern.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:8 D. De Sensi et al.

As sketched in Fig. 1, Ferret can be modelled as a single pipeline pa�ern of six stages where the
�rst and last one are intrinsically sequential while the other four stages are internally concurrent.
Listing 1 shows the FastFlow parallel code. �e business logic code of each pipeline stage is
encapsulated in a sequential FastFlow node (ff node t) by implementing the svc method (a pure
virtual method of the ff node t class). �en, each node is added to the ff Pipe pa�ern respecting
the pipeline order (lines 26-30). �e four middle stages are further parallelized using the farm
pa�ern created with the utility function make_Farm, which creates n replicas of the sequential
ff node t passed as template parameter.

Image
Dataset

Single
Thread queue

Thread
Pool

Segment

queue

Thread
Pool

Extract

queue
Thread
Pool

Index

queue

Thread
Pool

Rank

Results

queue
Single
Thread

Load Out

Fig. 1. General scheme of the Ferret pipeline.

Listing 1. FastFlow implementation of the ferret benchmark.

1 / / f i s t s t a g e

2 s t r u c t Load : f f n o d e t<long , l oad da ta > {
3 l o a d da t a ∗ sv c (l ong ∗) { <bu s i n e s s l o g i c code> } ;
4 } In ;

5 / / second s t ag e

6 s t r u c t Segment : f f n o d e t< l o ad da ta , s eg da ta > {
7 s e g da t a ∗ sv c (l o ad da t a ∗ i n) { <bus ine s s − l o g i c code> } ;
8 } ;
9 / / t h i r d s t ag e

10 s t r u c t E x t r a c t : f f n o d e t<seg da ta , e x t r d a t a > {
11 e x t r d a t a ∗ sv c (s eq da t a ∗ i n) { <bus ine s s − l o g i c code> } ;
12 } ;
13 / / f o u r t h s t ag e

14 s t r u c t Index : f f n o d e t<e x t r d a t a , v e c que ry da ta > {
15 v e c que r y da t a ∗ sv c (e x t r d a t a ∗ i n) { <bus ine s s − l o g i c code> } ;
16 } ;
17 / / f i f t h s t ag e

18 s t r u c t Rank : f f n o d e t<ve c que ry da ta , rank data > {
19 r ank da ta ∗ sv c (v e c que r y da t a ∗ i n) { <bus ine s s − l o g i c code >};
20 } ;
21 / / s i x t h s t ag e

22 s t r u c t Output : f f n o d e t<rank data > {
23 vo id ∗ svc (r ank da ta ∗ i n) { <bus ines − l o g i c code> } ;
24 } Out ;

25 / / c r e a t i n g the p i p e l i n e with farm workers

26 f f P i p e<> p ipe (In ,

27 make Farm<Segment , n> () ,

28 make Farm<Ex t r a c t , n> () ,

29 make Farm<Index , n> () ,

30 make Farm<Rank , n> () , Out) ;

31 / / p i p e l i n e e x e cu t i on

32 p ipe . run and wa i t end () ;

Listing 2 shows the code of the SkePU version of Swaptions, which has been parallelized with
a single map pa�ern. In this case, input and output SkePU smart data containers need to be created
from the existing data structures (lines 5-6). �en, the map object is created by providing the map
function that encapsulates the business logic code for the computation of the single element of
the input data collection (line 8). If needed, a speci�c backend runtime and a parallelism degree

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:9

can be selected for the map pa�ern (lines 10-12). Finally, the data parallel computation is executed,
inserting in the output data collection the computed results (line 14).

Listing 2. SkePU implementation of the Swaptions benchmark.

1 / / map f un c t i o n working on the s i n g l e i tem of the inpu t c o l l e c t i o n

2 MapOutput mapFunction (skepu2 : : Index1D index , parm elem) { <bus ine s s − l o g i c code >};
3
4 / / p r epa r i n g the inpu t and output data s t r u c t u r e s

5 skepu2 : : Vector<parm> swap t i on s sk (swapt ions , nSwaptions , f a l s e) ;

6 skepu2 : : Vector<MapOutput> ou tpu t sk (nSwapt ions) ;

7 / / c r e a t i n g the map o b j e c t by p r o v i d i n g the f un c t i o n to compute

8 auto map = skepu2 : :Map<1>(mapFunction) ;

9 / / s e t t i n g up the OpenMP backend and the number o f th r e ad s to use

10 auto spec = skepu2 : : BackendSpec{skepu2 : : Backend : : Type : : OpenMP} ;
11 spec . setCPUThreads (nThreads) ;

12 map . setBackend (spec) ;

13 / / map e x e cu t i on i n v o c a t i o n

14 map (output sk , swap t i on s sk) ;

3.3 P3ARSEC Parallel Implementations
Starting from the Pthreads implementations available in the PARSEC suite, we designed and
implemented a parallel version of each application by composing and nesting the pa�erns described
in Sect. 3.1. To provide an immediate view of the pa�erned scheme, we use the syntax introduced
in Sect. 3.1. While in most of the applications this description matches exactly the structure of
the implementation, for other complex benchmarks the executed pa�erns depend on conditions
evaluated at runtime. In those cases, the description has been simpli�ed by focusing on the most
important computational kernels. �e exact structure can be found in the P3ARSEC source code.

Furthermore, some of the PARSEC applications have a quite complex structure and semantics that
o�en exploits lock-based synchronizations. To be conservative in the porting of such applications,
in some cases we maintained the lock primitives that cannot be easily eliminated in the sequential
portions of code passed as input parameter to the pa�erns instantiation.

Blackscholes. �e application belongs to the Intel RMS benchmark suite [28] (Recognition,
Mining and Synthesis). It performs pricing for a portfolio of European options by numerically
solving the Black-Scholes partial di�erential equations [7]. �e Pthreads implementation divides
the portfolio into work units, one for each available thread. �en, each thread calculates the
prices for the options in its work unit. �is algorithm is iterated multiple times to obtain the �nal
estimation of the portfolio. �is benchmark is an iterative data-parallel computation. We model it
as an iterator pa�ern where the internal pa�ern is a map whose input is the collection of items
composing the portfolio. �e pa�ern scheme is therefore:

iterator(map)

Bodytrack. �e application is aimed at tracking the body pose of a human subject by analyzing
videos collected by multiple cameras. A frame contains one image from each camera. Bodytrack
has basically two phases that are executed for each frame. In the �rst phase, three kernels are
executed for each image. A�er this phase, two additional kernels are applied a number of times
on the frame. Before applying a kernel, we need to ensure that the previous kernel is terminated.
Accordingly, we can exploit parallelism only within each kernel.

�e Pthreads version is implemented by using a thread pool, which can execute di�erent
kernels. �e execution starts in the main thread and, for each frame, when a kernel needs to be
executed the main thread sends a command to the pool with an identi�er corresponding to the
kernel type. �e threads in the pool will then start to process chunks of the frame with the speci�ed

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:10 D. De Sensi et al.

kernel. To keep the load balanced, the chunks are not statically partitioned. Each thread, a�er the
processing of the current chunk, accesses a shared variable (using a lock) to get the identi�er of the
next chunk, and updates such variable.

In our pa�ern-based implementation we remove the thread pool, parallelizing each kernel as a
map. During the execution, every time a kernel is found the corresponding map is executed. Within
the pa�ern runtime, load balancing is achieved by using a dynamic scheduling policy without any
synchronization among the workers of the map. �e structure of the benchmark is the following:

iterator(iterator(map1; map2; map3); iterator(map4; map5))

To simplify the notation we use the symbol “;” to represent the comp pa�ern. As an example,
the syntax map1;map2;map3 is a shortcut to write comp(map1,comp(map2,map3)). Furthermore,
it is possible that between the composition of two pa�erns some piece of plain sequential code is
executed a�er the completion of the �rst pa�ern and before starting the second one. In the sequel,
the presence of sequential code regions between the composition of two parallel pa�erns will be
considered implicit with the symbol “;”.

Canneal. �e application minimizes the routing cost of a chip design. �e algorithm applies
random swaps between nodes and evaluates the cost of the new con�guration. If the new con�gu-
ration increases the routing cost, the algorithm performs a rollback step by swapping the elements
back. While the evaluation of the elements to be swapped can be performed in parallel, swaps
are executed atomically through a CAS instruction (compare-and-swap). A�er each iteration, a
convergence condition is checked and eventually the benchmark is terminated. �e workload is
memory-intensive because the resulting memory accesses are irregular and not easily cacheable.

�e Pthreads version follows an unstructured interaction model among threads that execute
atomic instructions on shared data structures. At the end of each iteration a barrier is executed and
each thread checks the termination condition.

We model this application as a single master-worker pa�ern, where the workers are sequential
pa�ern instances executing the swaps, the evaluation and eventually the rollback actions. At
the end of each iteration, the workers notify the master which in turn: i) implements the barrier
between two iterations by waiting all the noti�cations by the workers; ii) evaluates the termination
condition; iii) (re-)starts the workers computation if the condition is false.

Dedup. It is a streaming application that compresses a data stream with a combination of global
and local compression phases called “deduplication”.

�e Pthreads version implements a pipeline with �ve stages, where each middle stage is imple-
mented with a thread pool (the �rst and last stages are single-threaded). To lower the contention
on communication channels, cooperation between two consecutive stages is implemented using
multiple queues of �xed size. Each queue is assigned to a subset of threads in the same pool. Fig. 2
shows a representation of the dedup pipeline. Interestingly, results out of the third stage may be
transmi�ed directly to the last stage by-passing the fourth stage. Furthermore, the second stage
can generate more output items per input item.

Input File

Fragment
queue

Refine

Results

Deduplication Compress Re-order

Single
Thread

Single
Thread

Thread
pool

Thread
pool

Thread
pool

Fig. 2. General scheme of the Dedup pipeline.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:11

�e �rst stage (Fragment) reads the data stream from the disk and then partitions the data at
�xed positions; then, it produces in output a stream of data chunks. Each chunk can be processed
independently from the other chunks. �e second stage (Re�ne) further partitions the input chunk
into smaller �ne-grained chunks generating a nested stream. �e third stage (Deduplication) checks
if the chunk has already been compressed in the past by accessing a hash table. If so, the chunk is
marked as duplicate. �e fourth stage (Compress) compresses all the chunks that are not marked
as duplicate, and updates the corresponding table entries. To ensure correctness in the access
to the table performed by the Deduplication and the Compress stages, each bucket in the hash
table is protected with a lock. Finally, the Re-order stage writes the �nal compressed output data
into the output �le. If the input chunk was marked as duplicate, it stores a “reference” to the
corresponding chunk. �is stage reorders the data chunks as they arrive to match the original
order of the uncompressed data. �is stage represents the main bo�leneck of the dedup pipeline,
both due to data reordering and to I/O.

�e dedup benchmark can be modeled using di�erent nestings of pipe and farm pa�erns. �e
composition is possible even though some of the stages keep an internal state which is accessed
concurrently. Such state is lock-protected using the same schema used in the native Pthreads
implementation. �e �rst solution is the one with a structure closest to the original Pthreads
implementation. We model the application as a pipeline, where the �rst stage and the last stage are
seq pa�erns, while the three middle stages are instances of the farm pa�ern. We implement the
by-passing mechanism between the Deduplication stage and the Compress stage by adding a �ag to
each data element. �e �ag is set if the data element must be transmi�ed directly to the last stage.
In that case, the Compress stage only forwards the element to the �nal stage without any further
processing. �e synthetic scheme of this parallelization is the following:

1. pipe(seq1, farm(seq2), farm(seq3), farm(seq4), seq5)

By using well-known rules about farm and pipe pa�ern compositions that preserve the semantics
[2], we can also provide an alternative implementation described as follows:

2. pipe(seq1, farm(pipe(seq2, seq3, seq4)), seq5)

As we can see, all the middle stages can be replicated within a farm pa�ern, i.e. each farm worker
is a nested pipeline of three sequential stages. Alternatively, we can execute the stages of the inner
pipeline sequentially, by replacing the pipe with a comp, thus obtaining:

3. pipe(seq1, farm(seq2; seq3; seq4), seq5)

Finally, it is possible to derive a fourth version that exploits a specialization of the farm pa�ern
available in some frameworks (e.g., FastFlow). �e ofarm pa�ern is a farm that preserves input/out-
put ordering. When available, the use of this pa�ern allows to lighten the computational burden to
the last stage (denoted by seq5’), that now will just write the already ordered results on disk:

4. pipe(seq1, ofarm(seq2; seq3; seq4), seq5')

Sect. 4 will show a comparison among these di�erent versions.
Facesim. It is an Intel RMS application simulating the motion of human faces. It applies the

iterative Newton-Raphson algorithm over a sparse matrix. At every time step, di�erent kernels are
executed on a mesh (some kernels are executed multiple times within a single time step).

�e Pthreads version uses a thread pool which, at every time step, executes di�erent kernels
on the mesh. Every time a kernel is found during the execution, it is executed by the thread pool,
where each thread works on a statically assigned portion of the mesh.

In our pa�ern-based design each kernel is parallelized with a map pa�ern. We report only a
synthetic view of the overall structure of the application, since there are 19 di�erent map kernels,

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:12 D. De Sensi et al.

some of them repeated multiple times at a single time step. We focus on the seven most time-
consuming kernels (the remaining 12 map kernels are parallel operations on arrays invoked multiple
times during the execution):

iterator(map1; map2; map1; map3; map4; map2;
iterator(map5; map6; map7); map1; map4; map2)

Ferret. It is based on a toolkit used for content-based similarity search of feature-rich data such
as audio, images, video, and 3D shapes [45]. �e toolkit is con�gured for image similarity search.

�e Pthreads parallel implementation decomposes the application into six pipeline stages. �e
�rst and last stages are single-threaded while the other stages are con�gured with a thread pool
each. Communication channels between pools are implemented using queues of �xed size. �e
ferret pipeline does not have by-passing links as in dedup (see Fig. 1).

We model the application as pipe pa�ern. Di�erently from dedup, all the stages access only
private data. �e four middle stages are instances of the farm pa�ern, whereas the �rst and last
stage, in charge of I/O operations, are seq instances. As for dedup, we identi�ed three possible
nested schemes of pa�erns:

1. pipe(seq1, farm(seq2), farm(seq3), farm(seq4), farm(seq5), seq6)
2. pipe(seq1, farm(pipe(seq2, seq3, seq4, seq5)), seq6)
3. pipe(seq1, farm(seq2; seq3; seq4; seq5), seq6)

Moreover, seq1 is actually composed by two phases: seq1.1 that iterates over the �les in the input
folder and seq1.2 that, for each �le in the folder, loads the image contained in the �le in the main
memory. Since seq1.2 can be performed in parallel over di�erent �les, we can move it inside the
farm3. �is leads to the following pa�erns’ composition:

4. pipe(seq1.1, farm(seq1.2; seq2; seq3; seq4; seq5), seq6)

Also in this case in Sect. 4 we will show a comparison among such pa�erned schemes.
Fluidanimate. It is another Intel RMS benchmark that uses an extension of the Smoothed

Particle Hydrodynamics method to simulate an incompressible �uid. At every time step, the
application executes nine kernels to compute the position of the �uid particles at the next time
step. As in other benchmarks, the sequence of kernels is sequential while parallelism can be safely
exploited within each kernel region.

In the Pthreads implementation the three-dimensional space is statically divided among the
threads. Each thread applies each kernel on its space partition. A barrier is executed by all the
threads between two successive kernels.

In our pa�ern-based implementation we design each kernel as a map pa�ern. Since the kernel
sequence is iterated a number of times (one for each time step), the overall structure can be
represented as follows:

iterator(map1; map2; ... ; map9)

Freqmine. It is a data mining program that �nds the most frequent items within a transactional
dataset. It is based on the Frequent Pa�ern Tree data structure and executes the Frequent Pa�ern
Growth algorithm [39]. �is data-mining application uses a compact tree data structure to store
information about frequent pa�erns of the transaction database. Seven kernels are identi�ed in the
application, where the last kernel is executed multiple times.

�e Pthreads parallelization is not present in PARSEC while the standard version is an OpenMP
one. Each kernel is parallelized using the OpenMP 2.0 parallel-for construct.

In our version, each kernel corresponds to a map pa�ern, the last one iterated a number of times:
map1; map2; ... ; map6; iterator(map7)

3�e same technique can be applied to the other two alternative pa�ern compositions.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:13

Raytrace. �is application consists in a graphical render aimed at generating animated 3D
scenes by using a hierarchical grid raytracing algorithm. A kernel is executed at each frame.

In the Pthreads version the kernel is parallelized by partitioning the 3D scene among the threads.
�e work is dynamically partitioned and, similarly to the bodytrack Pthreads implementation,
once a thread �nishes to process a partition, it gets another one in order to keep the load balanced.

�e application can be modeled as a map iterated a �xed number of times. Di�erently from
blackscholes, the computation is extremely unbalanced and a good dynamic scheduling of the
partitions is of great importance. Furthermore, the computational weight of each map iteration is
low while the number of iterations is high. �e pa�erned scheme can be expressed as:

iterator(map)

Streamcluster. It is an application that solves the online clustering problem over incoming
streaming data. �e program consists in a sequence of loops whose iterations can be executed in
parallel. Di�erent loops are executed sequentially by using barriers, and they are interleaved by
serial regions of code whose length impacts the overall speedup.

�e computational kernel consists of two phases. �e �rst iterates a composition of a map+reduce
and a number of map instances (that are in turn iterated multiples times). �e second phase, working
on di�erent data, repeats the same steps exactly one time. �e simpli�ed pa�erned structure can
be expressed as follows:

// Phase 1:
iterator(map+reduce; map1; iterator(map2; map3; map4); iterator(map5; map6; map7));
// Phase 2
map+reduce; map1; iterator(map2; map3; map4); iterator(map5; map6; map7)

Swaptions. �is application is based on the Heath-Jarrow-Morton (HJM) method [40] to price a
portfolio of �nancial options.

�e Pthreads parallel version divides the data structures of the program into blocks equal to
the number of threads and assigns one block to each thread. �e threads are in charge of applying
the method on the options within their partition.

�is benchmark has a simple structure that can be modeled as a single map pa�ern, where the
input is a collection of items representing the swaptions portfolio.

Vips. It is based on the VASARI Image Processing System [46] and includes basic image processing
kernels such as a�ne transformations and convolutions. �is benchmark is a domain-speci�c
runtime system that can be used for image manipulation.

In the Pthreads version the user speci�es a function to get the next partition. Each thread
executes a loop where at each iteration: i) it gets a new partition of the image by calling the function
speci�ed by the user; ii) the partition is processed by using another function speci�ed by the user;
iii) the end of the processing on the current partition is noti�ed to the main thread by using a
POSIX semaphore. �e main thread calls a user-de�ned function at each noti�cation.

Despite it may look as a data parallel computation, vips can also be modeled as a stream parallel
computation. Indeed, since the function to get the next image partition is speci�ed by the user,
we can not access the entire image at once and decide how to partition it. For this reason, we
model this benchmark as a pipe, where the �rst stage is a farm where each worker retrieves a
partition and processes it by using the functions provided by the user. �e last stage of the pipeline
is sequential and calls the progress function speci�ed by the user. �e structure is expressed as
follows:

pipe(farm(seq1), seq2)

X264. �is application has been considered stream parallel, although it has a complex structure
and interaction among its stages. In [27] the authors have presented this application as a wavefront

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:14 D. De Sensi et al.

algorithm instead of a stream parallel one. In P3ARSEC we do not implement this application
since, due to its complexity, is not possible to easily separate the parallelism management from the
functional code. Moreover, besides requiring domain speci�c knowledge, this application cannot
be easily expressed by using the available pa�erns.

4 EXPERIMENTS
�e new suite P3ARSEC is provided as an extension of the original PARSEC suite, and can be
executed with the same tools used to run the native suite, e.g. the parsecmgmt tool. All the
benchmarks have been implemented in FastFlow [22], while some data-parallel applications have
also a SkePU [32] implementation. We veri�ed the correctness of all the implemented benchmarks
with the corresponding original sequential and Pthreads implementations.

In the analysis we focus both on the programming e�ort and on the performance achieved. �e
comparison is made with the parallel versions already available in PARSEC, see Tab. 1, and with the
task-based implementations wri�en in OmpSs and presented in [17]4. �eir work covers most of the
PARSEC applications except raytrace and vips. For x264 the authors provided an implementation
that maps one to one the Pthreads version (i.e. thread creations are replaced with task spawns and
thread joining with task waiting). Results in terms of performance and code complexity are the same
of the Pthreads version, and are not reported in the remaining part of this section. Furthermore,
the authors declared a performance improvement compared with Pthreads up to 42% in bodytrack
and dedup. By studying their implementations, we found that this advantage is mainly due to
some optimizations and code rewriting that changed the PARSEC sequential semantics, i.e. their
output is di�erent from the one produced by the original sequential and Pthreads versions. To be
more precise, in their implementation of bodytrack consecutive frames are processed in parallel,
while according to the algorithm semantics the parallelism can be exploited inside a frame but not
between frames, since the computation of a frame depends on the result of the previous one. �is
produces an output which is di�erent from the original one. In dedup, the output produced by
the OmpSs version is not deterministic and the dedup decompressor (provided with the original
PARSEC benchmark) is not able to decompress it. Since we want to strictly preserve the original
semantics of the applications, we do not consider these implementations. In our evaluation, we
decided to do not modify the original reference implementations (Pthreads, OpenMP and TBB)
since the purpose of this work is not to optimize the PARSEC benchmarks but to show that they
can be parallelized using parallel pa�erns obtaining similar performance �gures with lower lines
of code and lower code churn.

In the following we �rst evaluate the programming e�ort and then the performance results.

4.1 Programming E�ort
To analyze the programming e�ort required to parallelize each benchmark with di�erent parallel
programming approaches, we use as metrics the Lines-Of-Code (LOC) and the Code Churn. Evalu-
ating the programming e�ort in an objective way is a di�cult task and no universally accepted
metrics exist. We decided to use the LOC and Code Churn metrics since they are o�en used as
proxy metrics to evaluate programmability [17, 51, 58].

Lines of Code. �is metric is commonly used in so�ware engineering to measure code and
programming complexity [58]. For each benchmark we considered only the source �les required to
implement the parallelization or modi�ed during the parallelization (the other �les are the same in
all the versions). �ese �les include the de�nition of data structures used for thread communications,
4We would like to thank the authors for making their source code publicly available at h�ps://pm.bsc.es/gitlab/benchmarks/
parsec-ompss (At the time of writing this paper, commit ea319e57 was the most recent one.)

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

https://pm.bsc.es/gitlab/benchmarks/parsec-ompss
https://pm.bsc.es/gitlab/benchmarks/parsec-ompss

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:15

synchronization mechanisms and the �les containing calls to the di�erent parallel programming
frameworks. To have a fair comparison, these �les have been normalized by forma�ing them
according to a �xed programming style (e.g., brackets on the same line of the statement, single-line
if, and so forth). A�er that, we removed empty lines, comments and sections of code that are not
executed due to inactive macros. �e measures have been normalized with respect to the Pthreads
version (i.e. Pthreads is always 1, a value greater than 1 means more lines of code and lower than
1 means fewer lines of code).

Code Churn. A useful metric to estimate so�ware complexity is the code churn [51, 52], de�ned as
the number of lines modi�ed and added with respect to a previous version. In our case we consider
the code churn of each parallel version with respect to the original sequential code. Starting from
the sequential code, two di�erent parallel implementations may have a similar number of code
lines. However, if an implementation needs to modify and introduce a higher number of lines this
means that the e�ort required is likely higher than the one needed to implement the other versions.
�is metric is computed on the �les normalized with the same process described for Lines of Code5.

Discussion. We analyze the two metrics over all the benchmarks and over all the parallel versions.
�e results are shown in Fig. 3 and 4. Note that, when a bar is missing in the plot, it means that the
implementation with the corresponding framework is not available.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

blackscholes

bodytrack

canneal
dedup

facesim
ferret

fluidanimate

freqmine
raytrace

streamcluster

swaptions

vips

N
or

m
al

iz
ed

 L
in

es
 o

f C
od

e

Normalized Lines of Code

Pthreads FF TBB OMP OMPSS Skepu

Fig. 3. Lines of Code (LOC) of the di�erent parallel implementations, normalized between 0 and 1 with

respect to the Pthreads version (the lower the be�er).

On freqmine and swaptions there are no particular di�erences between the implementations.
In canneal, FastFlow and OmpSs versions have a slightly higher code churn, since Pthreads
code is very similar to the sequential one (the same functional part is executed by n threads).

Concerning blackscholes, bodytrack, facesim and raytrace, the Pthreads implementation
has an higher LOC and code churn, because of thread pools implementations in the di�erent
benchmarks, which for blackscholes is simply a wrapping of Pthreads calls to simplify threads
management. In blackscholes all the other implementations are equivalent, with OmpSs having a
slightly higher code churn. �e TBB implementation of bodytrack has around double the code
churn of FastFlow and OpenMP. �is happens because our FastFlow implementation widely
exploits C++ lambda expressions that simplify code development. On the contrary, the TBB version
available in the PARSEC suite does not exploit this C++ feature, forcing the programmer of the
TBB version to move and rewrite code which would not have been necessary if lambda were used.
5For reproducibility of results, we provide the script used to compute the metrics in the P3ARSEC repository, under the
scripts/ folder.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:16 D. De Sensi et al.

0

100

200

300

400

500

600

700

blackscholes

bodytrack

canneal
dedup

facesim
ferret

fluidanimate

freqmine
raytrace

streamcluster

swaptions

vips

C
od

e
C

hu
rn

w
rt

Se
qu

en
tia

l I
m

pl
em

en
ta

tio
n

Code Churn

Pthreads FF TBB OMP OMPSS Skepu
2979 918

Fig. 4. Code Churn (i.e. number of modified and added lines of code) of the di�erent parallel implementations

with respect to the original sequential implementation (the lower the be�er).

As discussed earlier, we did not change the code of the reference applications since this is not the
purpose of this work. In facesim, despite the LOC of the FastFlow version is slightly higher than
OmpSs, the code churn of OmpSs is much higher, since FastFlow version modi�ed only a minimal
part of the sequential code.

In the FastFlow versions of dedup and ferret we implemented di�erent pa�ern compositions.
We show the metrics of the version characterized by the best performance (discussed in Sect. 4.2).
�e other alternative FastFlow versions have similar measures. For both dedup and ferret, the
FastFlow code has signi�cantly lower LOC and code churn, since the Pthreads version also
needs to implement the threading support and all the data structures required to let the threads
communicate and synchronize with each other. Furthermore, in dedup, the advantage is even more
signi�cant since we were able to remove all the code lines related to data reordering, which in our
case is implicit in the ofarm pa�ern (pa�ern composition number 4.). �e TBB code of ferret is
slightly longer and more lines have been modi�ed.

�e Pthreads version of fluidanimate has a higher LOC and code churn because of a hand-
wri�en synchronization primitive (a spin-wait barrier) which has been implemented and used to
separate the di�erent parallel kernels. �is is not needed in FastFlow, since this is implicit at
the end of the map pa�ern. �e OmpSs implementation has a higher code churn as well, due to a
routine which is used to create a data structure used to enforce non-trivial dependencies between
the parallel tasks. �e TBB code has a higher code churn due to the speci�c parallelization design.

In streamcluster, the pa�ern-based implementations (FastFlow and SkePU) have the lowest
LOC and code churn. �ese metrics are higher for Pthreads since also in this case a spin-wait
barrier implementation is provided. OmpSs has a higher code churn as well, due to the rewriting
of some processing routines, but also to the introduction of additional parallelizations of some
sections with respect to Pthreads and FastFlow implementations.

In vips, the FastFlow version has a slightly higher LOC and code churn (∼ 20 lines). �is
happens because this benchmark is a framework which can be customized with code speci�ed by
its users. It has been designed to be parallelized with Pthreads and has some stringent constraints
and assumptions on the code provided by its users. However, being able to design a di�erent
parallelization by only modifying few tens of lines of code, while still preserving the same design
and semantics, is an important result.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:17

4.2 Performance Evaluation
In the following, we describe the performance results achieved on three di�erent multi-core
architectures. �ey are described in Tab. 2.

Name Description Con�guration

Intel Xeon
Server

Dual-socket NUMA machine with two Intel Xeon E5-2695 Ivy Bridge CPUs
running at 2.40GHz featuring 24 cores (12 per socket). Each hyper-threaded
core has 32KB private L1, 256KB private L2 and 30MB of L3 shared with the
cores on the same socket. �e machine has 64GB of DDR3 RAM.

Linux 3.14.49 x86 64
shipped with CentOS 7.1.
Available compiler gcc
version 4.8.5.

Intel Xeon
Phi

Machine with the Intel Xeon Phi model 7210 (codename Knights Landing,
KNL). �e KNL is equipped with 32 tiles (each with two cores) working at
1.3 GHz, interconnected by an on-chip mesh network. Each core (4-way
Hyper-�reading) has 32 KB L1d private cache and a L2 cache of 1 MB
shared with the sibling core on the same tile. �e machine is con�gured
with 96 GB of DDR4 RAM with 16 GB of high-speed on-package MCDRAM
con�gured in cache mode.

Linux 3.10.0 x86 64
shipped with Centos 7.2.
Available compiler gcc
version 4.8.5.

IBM
Power8
Server

Dual-socket IBM server 8247-42L with two Power8 processors each with
ten cores (total 20 cores) working at 3.69GHz. Each core (8-way SMT) has
private L1d and L2 caches of 64 KB and 512 KB, and a shared on-chip L3
cache of 8 MB per core. �e machine has 64 GB of RAM.

Linux 4.4.0-47 ppc64
shipped with Ubuntu
16.04. Available compiler
gcc version 5.4.0.

Table 2. Multi-core machines used in the performance evaluation.

Experimental se�ings. In all the three architectures we used FastFlow version 2.1, SkePU
version 2 and OmpSs version 16.06.3. �e source codes of all the parallel versions have been
compiled with the -O3 �ag6. For the evaluation we used the PARSEC native input set, to obtain
results representative of real-world program executions. �e parsecmgmt tool has been used for
launching the original PARSEC benchmarks and the FastFlow and SkePU implementations. For
the OmpSs implementations we used the scripts released by the authors. In the parallel versions of
the benchmarks, we need to specify the concurrency degree n to use, which, with the exception
of dedup and ferret, corresponds to the number of threads executed. We used di�erent values
for n, ranging from 1 to the number of threads contexts available in the used architecture (i.e. 48
in the Intel Xeon Server, 256 in the Intel Xeon Phi and 160 in the IBM Power 8 Server). �e only
exception to this rule is swaptions, which cannot be executed with more than 128 threads, due
to limitations in the input set provided. �e canneal, raytrace and vips benchmarks can not be
compiled on the IBM Power architecture due to architecture speci�c assembler instructions used in
the original implementations.

Discussion. �e time measured is the one spent in the so-called region of interest (ROI), which
includes all parts sensitive to the parallelization. �is approach is commonly adopted when
comparing di�erent parallelizations of the same application [17]. Each program has been run
multiple times and the average results are shown (the standard deviation is always negligible and
it is not shown for readability reasons). All the benchmarks have been executed with the original
parameters provided by PARSEC. �e results are shown in Fig. 5, where the best execution times of
the benchmarks for each version, obtained by varying the n parameter, have been normalized to
the PARSEC reference implementation (i.e. OpenMP for freqmine, Pthreads for all the others
benchmarks). Accordingly, values lower than 1 represent cases with execution time lower than the
6Other benchmark speci�c �ags are those speci�ed by default in the Makefiles distributed by PARSEC.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:18 D. De Sensi et al.

0.6

0.8

1

1.2

1.4

blackscholes

bodytrack

canneal
dedup

facesim
ferret

fluidanimate

freqmine
raytrace

streamcluster

swaptions

vips

N
or

m
al

iz
ed

 T
im

es

Normalized Times - Intel Xeon

Pthreads FF TBB OMP OMPSS Skepu

0.6

0.8

1

1.2

1.4

blackscholes

bodytrack

canneal
dedup

facesim
ferret

fluidanimate

freqmine
raytrace

streamcluster

swaptions

vips

N
or

m
al

iz
ed

 T
im

es

Normalized Times - Intel Xeon Phi

Pthreads FF TBB OMP OMPSS Skepu

1.69 2.01 1.60

0.6

0.8

1

1.2

1.4

blackscholes

bodytrack

dedup
facesim

ferret
fluidanimate

freqmine
streamcluster

swaptions

N
or

m
al

iz
ed

 T
im

es

Normalized Times - IBM Power 8

Pthreads FF TBB OMP OMPSS Skepu

Fig. 5. Best execution times normalized with respect to the PARSEC reference (i.e. OpenMP for freqmine,
Pthreads for the remaining benchmarks)

one of the reference PARSEC implementation. For completeness, Tab. 4 reports the values of the
best execution times of the various versions on the di�erent architectures. Detailed performance
results are available on the GitHub repository7.

Small di�erences and discrepancies in the results (between di�erent versions of the same bench-
mark and/or between di�erent architectures) are reasonably due to di�erences in the compiler,
architecture and by the intrinsic di�erences and optimizations in the runtime of the frameworks
used. Concerning architecture di�erences, the IBM Power 8 implements a 8-way Simultaneous
Multi-�reading (SMT), whereas the Intel Xeon Phi and the Intel Xeon server implement a 4-
way and a 2-way Hyper-�reading, respectively. �e OmpSs implementations of blackscholes,
7Under the results TACO folder.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:19

canneal and fluidanimate executed on the Intel Xeon Phi give poor performance results. �is
is due to the fact that currently the OmpSs runtime has not been optimized for this new kind
of platform. In the sequel, we will discuss the most remarkable di�erences among the analyzed
versions.

For dedup, we show in Fig 5 only the best FastFlow version (the one with scheme pipe(seq1,
ofarm(seq2, seq3, seq4), seq5’)). �is version is signi�cantly faster than the Pthreads one,
since it removes all the logic related to data reordering from the seq5 stage, leaving only the writing
of the data on disk. �e improvement is less evident in the Intel Xeon Phi architecture since the
writing part of the seq5 stage is slower with respect to the other architectures due to the much lower
clock, thus reducing the impact of this optimization. As shown in Table 3, the performance of this
pa�erned version is 26% higher than the one of the other pa�erned versions that are more similar
to the original Pthreads implementation. �is is an interesting case where pa�erns composition
allows the programmer to prototype alternative versions that are more e�cient than the initial
one, by changing just few lines of code (less than 10).

Despite di�erent versions could also be implemented with other programming models, this would
require expressing again from scratch all the communications and the data dependencies between
di�erent parts of the parallel application. �is is an error prone task and could signi�cantly increase
the code length. On the contrary, in pa�ern-based model dependencies and communications are
implicitly coded in the pa�ern.

Arch. Bench 1. 2. 3. 4.

Intel Xeon
Server

dedup 9.23 7.36 8.74 9.26
ferret 25.44 24.48 25.89 25.89

Intel Xeon
Phi

dedup 6.22 6.54 6.32 6.6
ferret 51.13 52.9 55.69 92.6

IBM Power 8 dedup 10.79 12.07 12.61 13.59
ferret 25.53 23.79 25.32 35.2

Table 3. Best speedups of di�erent parallel pa�erns for dedup and ferret. Numbers refer to the di�erent

pa�erns compositions described in Section 3.

In facesim both the FastFlow and the OmpSs versions outperform the Pthreads parallelization
(up to 40% faster). �is is mainly due to implementation choices adopted in the di�erent versions.
In Pthreads, when a parallel kernel is found during the execution, one abstraction of a mesh
partition is inserted for each thread in a shared queue, accessed by all threads and protected by
locks. Instead, in the other two implementations a partition is statically assigned to each thread
without any need to access any shared data structure, thus achieving be�er speedup. Indeed, as
shown in Figure 6, while the di�erent versions are equivalent with low concurrency levels, the
Pthreads version starts to perform poorly when more threads are used, due to the high contention
on this shared queue. A parallelization strategy similar to that of FastFlow could be probably
used in the other programming models as well. However, as described earlier, we decided not to
modify the original reference implementations since it is not the purpose of this work.

For the pa�ern-based implementation of ferret, we report in Table 3 the results of all the
alternative pa�ern implementations. �e pipe(seq1.1, farm(seq1.2; seq2; seq3; seq4;
seq5), seq6) version is 80% more performing than the �rst pa�ern-based implementation, closer
to the design of the Pthreads version, showing again the importance of and �exibility of pa�erns
composition to introduce optimizations. OmpSs and FastFlow versions of ferret produces the

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:20 D. De Sensi et al.

 0

 2

 4

 6

 8

 10

 12

 1 8 16 24 32

S
pe

ed
up

Parsec Parallelism Degree

Facesim - Intel Xeon Server

Pthreads
FastFlow

OmpSs

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 32 64 96 128

S
pe

ed
up

Parsec Parallelism Degree

Facesim - Intel Xeon Phi

Pthreads
FastFlow

OmpSs

(b)

 0

 2

 4

 6

 8

 10

 12

 1 20 40 60 80 100 120

S
pe

ed
up

Parsec Parallelism Degree

Facesim - IBM Power8 Server

Pthreads
FastFlow

OmpSs

(c)

Fig. 6. facesim speedup, for di�erent versions and on di�erent architectures.

best performance gain over the Intel Xeon Phi and IBM Power 8 server. �is happens because,
di�erently from Pthreads and TBB, both versions parallelize the load of the images from the �le
(by separating seq1.1 from seq1.2). �e same e�ect does not occur on the Intel Xeon Server due
to the lower number of cores, since the images loading stage becomes a bo�leneck only when
using a high number of threads.

On fluidanimate, we measured signi�cant improvements of the pa�ern-based implementation
with respect to the Pthreads one on the Intel Xeon Phi and IBM Power 8 Server. �is is mainly
due to the di�erent implementation of the barrier provided by the di�erent frameworks. A barrier
(implicit in the pa�ern-based approach) is executed a�er each parallel kernel. �e one implemented
in FastFlow is more e�cient than the one used by Pthreads, thus leading to this performance gap.
�is performance di�erence is remarkable only at high concurrency levels, as shown in Figure 7
and does not occur on the Intel Xeon Server, since it has only 48 threads contexts.

 0

 2

 4

 6

 8

 10

 12

 14

 1 8 16 24 32

S
pe

ed
up

Parsec Parallelism Degree

Fluidanimate - Intel Xeon Server

Pthreads
FastFlow

TBB
OmpSs

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 32 64 96 128 160 192 224 256

S
pe

ed
up

Parsec Parallelism Degree

Fluidanimate - Intel Xeon Phi

Pthreads
FastFlow

TBB
OmpSs

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 20 40 60 80 100 120

S
pe

ed
up

Parsec Parallelism Degree

Fluidanimate - IBM Power8 Server

Pthreads
FastFlow

TBB
OmpSs

(c)

Fig. 7. fluidanimate speedup, for di�erent versions and on di�erent architectures.

On streamcluster, by parallelizing the kernels with map pa�erns we greatly simpli�ed the code.
�is made it possible to remove some unnecessary synchronizations (e.g., in the pspeedy function),
leading to a performance improvement up to 40% on the Intel Xeon Phi. Such ine�ciencies in
the Pthreads implementation occur because of an intricate design, which led to a non optimized
implementation. On the other hand, the pa�ern based design of streamcluster is simpler and
more e�ective. Moreover, we did not parallelize some tiny functions which were parallelized in the
Pthreads and OmpSs version. For such functions, the overhead of the parallelization is not worth
and slows down the entire application.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:21

�e original TBB implementation of swaptions produced poor performance results with respect
to other parallel implementations. We were able to reduce this gap by changing the size of the
block scheduled to the di�erent threads.

A Version BS BD CN DD FC FR FL FQ RT SC SW VP

In
te
lX

eo
n
Se
rv
er Seq 135.2 126.9 82.9 28.6 350.5 368.1 286.9 431.9 145.6 417.3 240.1 97.6

Pthreads 4.6 16.1 7.8 4.2 47.8 14.3 27.1 - 6.1 42.4 9.7 4.4
FastFlow 4.7 15.3 7.4 3.1 32.2 14.2 26.3 34.1 6.1 33.1 10.1 4.4

TBB 5.1 13.8 - - - 14.1 26.3 - - 31.1 10.6 -
OpenMP 4.6 16.3 - - - - - 33.3 - - - -
OmpSs 4.9 - 9.6 - 32.7 14.4 24.6 35.9 - 46.7 10.2 -
SkePU 4.8 - - - - - - - 6.1 34.5 9.7 -

In
te
lX

eo
n
Ph

i Seq 997.7 704.5 311.4 120.0 1653.5 2102.2 1403.7 1835.8 981.8 1251.5 1416.4 691.1
Pthreads 7.6 66.4 10.2 20.7 137.6 39.4 63.2 - 13.2 79.6 16.8 10.7
FastFlow 8.3 58.6 10.1 18.1 80.3 22.7 40.0 102.8 13.2 49.0 16.9 10.7

TBB 8.5 53.7 - - - 40.6 39.7 - - 48.1 18.9 -
OpenMP 8.3 59.1 - - - - - 101.7 - - - -
OmpSs 12.9 - 20.4 - 90.5 26.3 101.4 105.1 - 83.5 17.5 -
SkePU 8.3 - - - - - - - 14.0 43.9 18.7 -

IB
M

Po
w
er

8

Seq 167.1 146.3 - 45.4 376.3 228.2 344.3 541.6 - 545.0 284.6 -
Pthreads 5.3 17.2 - 4.7 58.1 8.3 35.0 - - 100.7 10.1 -
FastFlow 4.2 14.2 - 3.3 34.5 6.5 22.9 45.5 - 66.7 9.1 -

TBB 4.7 16.2 - - - 8.4 31.3 - - 72.7 10.0 -
OpenMP 4.9 16.2 - - - - - 41.7 - - - -
OmpSs 5.2 - - - 36.4 6.5 32.8 50.1 - 96.3 11.2 -
SkePU 4.6 - - - - - - - - 68.8 10.2 -

Table 4. Best execution times (sec.). For the parallel versions, they are obtained by varying the concur-

rency degree. BS (blackscholes), BD (bodytrack), CN (canneal), DD (dedup), FC (facesim), FR (ferret), FL
(fluidanimate), FQ (freqmine), RT (raytrace), SC (streamcluster), SW (swaptions), VP (vips). Concerning
the missing data, in the OmpSs implementation of the benchmark suite, raytrace and vips are not available.
Moreover, the output produced by dedup and bodytrack is di�erent from the one produced by the original

PARSEC implementation and therefore their related results are not shown. Finally, canneal, raytrace and
vips benchmarks can not be compiled on the IBM Power architecture due to some architecture specific

assembler instructions.

4.3 Summary of Results
To summarize the results, we achieved an average reduction of 26% in the lines of code (in both
FastFlow and SkePU) compared with the original Pthreads implementation, and an average
reduction of 3% with respect to the OmpSs implementations. In the best case, we reduced the lines
of code up to 87% with respect to Pthreads, and 14% compared with the OmpSs versions. �e code
churn is in average 58% lower than Pthreads and 34% lower than OmpSs version. Concerning the
performance, the FastFlow implementations obtained an average performance gain of 14%, with a
maximum gain of 42% and a maximum loss of 9% with respect to the Pthreads one. Considering the
benchmarks implemented with SkePU, we obtained an average performance gain of 7% (maximum
gain of 45%, maximum loss of 11%). Finally, OmpSs implementations obtained an average gain of
2% (maximum gain of 37%, maximum loss of 23%)8 with respect to the Pthreads implementation.
8For the sake of fairness we did not consider in this comparison the results of OmpSs implementations of blackscholes,
canneal and fluidanimate on the Intel Xeon Phi.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

33:22 D. De Sensi et al.

�is evaluation con�rmed that the pa�ern-based parallel programming approach reduces the
lines of code and code churn without impairing performance. In addition, in several cases we were
able to improve the performance by rapidly prototyping alternative pa�ern compositions.

5 RELATEDWORK
Pa�ern-based programming has become a widely used coding practice in so�ware engineering,
both for sequential programming [33] and, with smaller acceptance, in the parallel computing
domain [48]. �e main reason around this shi� is that parallel pa�erns simplify coding and
maintainability and increase so�ware portability, yet providing a good level of performance, o�en
close to the one obtained with hand-tuned code. Notwithstanding, a comprehensive analysis
that demonstrates the feasibility of using the pa�ern-based approach for parallelizing real-world
applications is still missing. We tried to �ll this gap for multi-core platforms by parallelizing the
benchmarks of the PARSEC suite using the pa�ern-based approach. �e PARSEC suite covers a wide
range of working set size, locality pa�erns, data sharing, synchronizations, and memory bandwidth
requirements, which have made it particularly a�ractive for several research works [14, 23, 42].

In [17] the authors propose PARSECSs, a signi�cant subset of the PARSEC suite (10 benchmarks)
implemented using a task-based parallel programming model (OmpSs). �ey demonstrated that, on
average, the task-based approach is able to reduce the lines of code needed to develop the PARSEC
applications with respect to the native Pthreads implementations. Furthermore, they found that
the overall performance is not degraded. Our work takes inspiration from PARSECSs, with the
aim to prove that a pa�ern-based parallel programming model is a well suited candidate for high
level parallelization of applications. In our study, we also validated the results obtained in [17] by
running the PARSECSs benchmarks on di�erent multi-core platforms �nding that in some cases
they added optimizations that changed the original PARSEC sequential semantics, thus improving
the original performance.

In [42] the authors studied pipeline parallelism proposing an extension to the Cilk programming
model [8]. Results are validated using three PARSEC benchmarks (ferret, dedup and x264) and
they compared their approach with Pthreads and TBB. Other research works evaluated pa�ern-
based programming frameworks by using only micro-benchmarks [26, 32, 44]. In a previous work,
we carried out a preliminary evaluation on a small subset of PARSEC applications [21]. To the best
of our knowledge, no previous study has been conducted to thoroughly assess both the performance
and the programming e�ort of the pa�ern-based approach.
FastFlow has been used to parallelize several applications/algorithms in di�erent application

domains: bioinformatics [1, 9], data-mining [4], data streaming processing [50], parallel numerical
kernels [11] and network monitoring [19]. �ese papers mainly focus on performance, and they
can hardly be used to demonstrate general insights into the e�ectiveness of the pa�ern-based
parallel programming model. With this work, we tried to provide a �rst answer in this direction.

6 CONCLUSIONS AND FUTUREWORK
�is paper presented P3ARSEC, a suite based on PARSEC for benchmarking parallel pa�ern-based
frameworks. Each application has been described from the pa�ern perspective as a composition and
nesting of recurrent parallel pa�erns. �is provided a guideline to parallelize such applications in
di�erent frameworks that o�er the pa�erns we used in our analysis, and con�rmed that relatively
few parallel pa�erns are su�cient to model complex real-world applications.

Besides providing a benchmarking suite for pa�ern-based parallel programming, which was
missing in the literature, this paper also proposed an analysis aimed at evaluating the e�ectiveness of
the parallel pa�ern-based programming methodology in terms of programmability and performance.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:23

To evaluate the programming e�ort, we computed speci�c metrics for all the implemented P3ARSEC
benchmarks. �e �nal result is that lines of code and code churn using parallel pa�erns are reduced
with respect to using Pthreads, and it is in most cases comparable with other parallel programming
approaches based on #pragma-based annotations (i.e. OpenMP and OmpSs).

�e performance has been accurately evaluated on three di�erent multi-core systems, which
represent di�erent classes of general-purpose shared-memory platforms. �e analysis showed that
the performance achieved by the pa�erned versions is in general similar to the one of the other
implementations based on Pthreads and OmpSs. Furthermore, there are some speci�c cases where
the �exibility of the pa�ern-based approach allows the programmer to easily prototype variants of
the parallel implementations, which perform be�er than the initial and simpler versions.

As a future direction, we will extend the work including as target platforms GPUs and evaluating
the performance and programmability of pa�ern-based programming framework on many-core
systems. Moreover, we would like to evaluate the impact on the performance of using di�erent
C/C++ compilers, for example by using the icc compiler on Intel-based architectures.

REFERENCES
[1] Marco Aldinucci, Mario Coppo, Ferruccio Damiani, Maurizio Drocco, Massimo Torquati, and Angelo Troina. 2011. On

Designing Multicore-Aware Simulators for Biological Systems. In 2011 19th International Euromicro Conference on
Parallel, Distributed and Network-Based Processing. 318–325. h�ps://doi.org/10.1109/PDP.2011.81

[2] Marco Aldinucci and Marco Danelu�o. 1999. Stream Parallel Skeleton Optimization. In in proceedings of the 11th
IASTED International Conference on Parallel and Distributed Computing and Systems, MIT. IASTED/ACTA press,
955–962.

[3] Marco Aldinucci, Marco Danelu�o, Peter Kilpatrick, Massimiliano Meneghin, and Massimo Torquati. 2012. An E�cient
Unbounded Lock-Free �eue for Multi-core Systems. In Proc. of 18th Intl. Euro-Par 2012 Parallel Processing (LNCS),
Vol. 7484. Springer, Rhodes Island, Greece, 662–673. h�ps://doi.org/10.1007/978-3-642-32820-6 65

[4] Marco Aldinucci, Salvatore Ruggieri, and Massimo Torquati. 2014. Decision tree building on multi-core using FastFlow.
Concurrency and Computation: Practice and Experience 26, 3 (2014), 800–820. h�ps://doi.org/10.1002/cpe.3063

[5] Bruno Bacci, Marco Danelu�o, Salvatore Orlando, Susanna Pelaga�i, and Marco Vanneschi. 1995. P3L: A structured
high-level parallel language, and its structured support. Concurrency: Practice and Experience 7, 3 (1995), 225–255.
h�ps://doi.org/10.1002/cpe.4330070305

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. �e PARSEC Benchmark Suite: Characterization
and Architectural Implications. In 17th Inter. Conf. on Parallel Architectures and Compilation Techniques (PACT ’08).
ACM, 72–81. h�ps://doi.org/10.1145/1454115.1454128

[7] Fischer Black and Myron Scholes. 1973. �e Pricing of Options and Corporate Liabilities. Journal of Political Economy
81, 3 (1973), 637–54.

[8] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli
Zhou. 1995. Cilk: An E�cient Multithreaded Runtime System. SIGPLAN Not. 30, 8 (Aug. 1995), 207–216. h�ps:
//doi.org/10.1145/209937.209958

[9] Andrea Bracciali, Marco Aldinucci, Murray Pa�erson, Tobias Marschall, Nadia Pisanti, Ivan Merelli, and Massimo
Torquati. 2016. PWHATSHAP: e�cient haplotyping for future generation sequencing. BMC Bioinformatics 17, S-11
(2016), 342. h�ps://doi.org/10.1186/s12859-016-1170-y

[10] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Cha�, Martin Odersky, and Kunle Olukotun.
2011. A Heterogeneous Parallel Framework for Domain-Speci�c Languages. In 2011 Inter. Conf. on Parallel Architectures
and Compilation Techniques (PACT ’11). IEEE, 89–100. h�ps://doi.org/10.1109/PACT.2011.15

[11] Daniele Buono, Marco Danelu�o, Tiziano De Ma�eis, Gabriele Mencagli, and Massimo Torquati. 2014. A Lightweight
Run-Time Support for Fast Dense Linear Algebra on Multi-Core. In Proceedings of 12th IASTED International Conference
on Parallel and Distributed Computing and Networks. Iasted, Innsbruck, Austria.

[12] Colin Campbell and Ade Miller. 2011. A Parallel Programming with Microso� Visual C++: Design Pa�erns for Decompo-
sition and Coordination on Multicore Architectures (1st ed.). Microso� Press.

[13] Denis Caromel, Ludovic Henrio, and Mario Leyton. 2008. Type Safe Algorithmic Skeletons. In 16th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP 2008). 45–53. h�ps://doi.org/10.1109/PDP.2008.29

[14] Juan M. Cebrian, Magnus Jahre, and Lasse Natvig. 2015. ParVec: Vectorizing the PARSEC Benchmark Suite. Computing
97, 11 (Nov. 2015), 1077–1100. h�ps://doi.org/10.1007/s00607-015-0444-y

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

https://doi.org/10.1109/PDP.2011.81
https://doi.org/10.1007/978-3-642-32820-6_65
https://doi.org/10.1002/cpe.3063
https://doi.org/10.1002/cpe.4330070305
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/209937.209958
https://doi.org/10.1186/s12859-016-1170-y
https://doi.org/10.1109/PACT.2011.15
https://doi.org/10.1109/PDP.2008.29
https://doi.org/10.1007/s00607-015-0444-y

33:24 D. De Sensi et al.

[15] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert Bradshaw, and Nathan
Weizenbaum. 2010. FlumeJava: Easy, E�cient Data-parallel Pipelines. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA, 363–375.
h�ps://doi.org/10.1145/1806596.1806638

[16] Barbara Chapman. 2007. �e Multicore Programming Challenge. Springer Berlin Heidelberg, Berlin, Heidelberg, 3–3.
[17] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé, Jesús Labarta, and Mateo Valero. 2015.

PARSECSs: Evaluating the Impact of Task Parallelism in the PARSEC Benchmark Suite. ACM Trans. Archit. Code
Optim. 12, 4, Article 41 (Dec. 2015), 22 pages. h�ps://doi.org/10.1145/2829952

[18] Murray Cole. 2004. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming.
Parallel computing 30, 3 (2004), 389–406.

[19] Marco Danelu�o, Luca Deri, Daniele De Sensi, and Massimo Torquati. 2013. Deep Packet Inspection on Commodity
Hardware using FastFlow. In Proceedings of 15th International Parallel Computing Conference (ParCo) (Advances in
Parallel Computing), Michael Bader, Arndt Bode, Hans-Joachim Bungartz, Michael Gerndt, Gerhard R. Joubert, and
Frans Peters (Eds.), Vol. 25. IOS Press, Munich, Germany, 92 – 99. h�ps://doi.org/10.3233/978-1-61499-381-0-92

[20] Marco Danelu�o, José Daniel Garcia, Luis Miguel Sanchez, Rafael Sotomayor, and Massimo Torquati. 2016. Introducing
Parallelism by Using REPARA C++11 A�ributes. In 24th Euromicro Inter. Conf. on Parallel, Distributed, and Network-
Based Processing (PDP). 354–358. h�ps://doi.org/10.1109/PDP.2016.115

[21] Marco Danelu�o, Tiziano De Ma�eis, Daniele De Sensi, Gabriele Mencagli, and Massimo Torquati. 2017. P3ARSEC:
Towards Parallel Pa�erns Benchmarking. In Proceedings of the Symposium on Applied Computing (SAC ’17). ACM, New
York, NY, USA, 1582–1589. h�ps://doi.org/10.1145/3019612.3019745

[22] Marco Danelu�o and Massimo Torquati. 2015. Structured Parallel Programming with ”core” FastFlow. In Central
European Functional Programming School. LNCS, Vol. 8606. Springer, 29–75.

[23] Daniele De Sensi, Massimo Torquati, and Marco Danelu�o. 2016. A Recon�guration Algorithm for Power-Aware
Parallel Applications. ACM Trans. Archit. Code Optim. 13, 4, Article 43 (dec 2016), 25 pages. h�ps://doi.org/10.1145/
3004054

[24] Daniele De Sensi, Massimo Torquati, and Marco Danelu�o. 2017. Mammut: High-level management of system knobs
and sensors. So�wareX 6 (2017), 150 – 154. h�ps://doi.org/10.1016/j.so�x.2017.06.005

[25] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli�ed Data Processing on Large Clusters. Commun. ACM
51, 1 (Jan. 2008), 107–113. h�ps://doi.org/10.1145/1327452.1327492

[26] David del Rio Astorga, Manuel F. Dolz, Javier Fernndez, and J. Daniel Garca. 2017. A generic parallel pa�ern
interface for stream and data processing. Concurrency and Computation: Practice and Experience (2017), n/a–n/a.
h�ps://doi.org/10.1002/cpe.4175 e4175 cpe.4175.

[27] Antonio J. Dios, Rafael Asenjo, Angeles Navarro, Francisco Corbera, and Emilio L. Zapata. 2010. Evaluation of the
Task Programming Model in the Parallelization of Wavefront Problems. In 2010 IEEE 12th International Conference on
High Performance Computing and Communications (HPCC). 257–264. h�ps://doi.org/10.1109/HPCC.2010.78

[28] Pradeep Dubey. 2005. Recognition, Mining and Synthesis Moves Computers to the Era of Tera. Technology@Intel
Magazine (Feb. 2005).

[29] Kento Emoto and Kiminori Matsuzaki. 2014. An Automatic Fusion Mechanism for Variable-Length List Skeletons
in SkeTo. International Journal of Parallel Programming 42, 4 (01 Aug 2014), 546–563. h�ps://doi.org/10.1007/
s10766-013-0263-8

[30] Johan Enmyren and Christoph W. Kessler. 2010. SkePU: A Multi-backend Skeleton Programming Library for multi-GPU
Systems. In Proceedings of the Fourth International Workshop on High-level Parallel Programming and Applications
(HLPP ’10). ACM, New York, NY, USA, 5–14. h�ps://doi.org/10.1145/1863482.1863487

[31] Ste�en Ernsting and Herbert Kuchen. 2012. Algorithmic Skeletons for Multi-core, multi-GPU Systems and Clusters.
Int. J. High Perform. Comput. Netw. 7, 2 (April 2012), 129–138. h�ps://doi.org/10.1504/IJHPCN.2012.046370

[32] August Ernstsson, Lu Li, and Christoph Kessler. 2017. SkePU2: Flexible and Type-Safe Skeleton Programming for
Heterogeneous Parallel Systems. International Journal of Parallel Programming (2017), 1–19. h�ps://doi.org/10.1007/
s10766-017-0490-5

[33] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Pa�erns: Elements of Reusable Object-
oriented So�ware. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[34] Buğra Gedik, Habibe G.Özsema, and Özcan Öztürk . 2016. Pipelined Fission for Stream Programs with Dynamic
Selectivity and Partitioned State. J. Parallel Distrib. Comput. 96, C (Oct. 2016), 106–120. h�ps://doi.org/10.1016/j.jpdc.
2016.05.003

[35] Horacio González-Vélez and Mario Leyton. 2010. A Survey of Algorithmic Skeleton Frameworks: High-level Structured
Parallel Programming Enablers. So�w. Pract. Exper. 40, 12 (Nov. 2010), 1135–1160. h�ps://doi.org/10.1002/spe.v40:12

[36] Clemens Grelck. 2005. Shared Memory Multiprocessor Support for Functional Array Processing in SAC. J. Funct.
Program. 15, 3 (May 2005), 353–401. h�ps://doi.org/10.1017/S0956796805005538

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

https://doi.org/10.1145/1806596.1806638
https://doi.org/10.1145/2829952
https://doi.org/10.3233/978-1-61499-381-0-92
https://doi.org/10.1109/PDP.2016.115
https://doi.org/10.1145/3019612.3019745
https://doi.org/10.1145/3004054
https://doi.org/10.1145/3004054
https://doi.org/10.1016/j.softx.2017.06.005
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1002/cpe.4175
https://doi.org/10.1109/HPCC.2010.78
https://doi.org/10.1007/s10766-013-0263-8
https://doi.org/10.1007/s10766-013-0263-8
https://doi.org/10.1145/1863482.1863487
https://doi.org/10.1504/IJHPCN.2012.046370
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1016/j.jpdc.2016.05.003
https://doi.org/10.1016/j.jpdc.2016.05.003
https://doi.org/10.1002/spe.v40:12
https://doi.org/10.1017/S0956796805005538

Bringing Parallel Pa�erns out of the Corner: the P
3
ARSEC Benchmark Suite 33:25

[37] Dalvan Griebler, Marco Danelu�o, Massimo Torquati, and Luiz Gustavo Fernandes. 2017. SPar: A DSL for High-
Level and Productive Stream Parallelism. Parallel Processing Le�ers 27, 1 (2017), 1–20. h�ps://doi.org/10.1142/
S0129626417400059

[38] Michael Haidl and Sergei Gorlatch. 2017. High-Level Programming for Many-Cores Using C++14 and the STL.
International Journal of Parallel Programming (13 Mar 2017). h�ps://doi.org/10.1007/s10766-017-0497-y

[39] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Pa�erns Without Candidate Generation. SIGMOD Rec. 29,
2 (May 2000), 1–12. h�ps://doi.org/10.1145/335191.335372

[40] David Heath, Robert Jarrow, and Andrew Morton. 1992. Bond Pricing and the Term Structure of Interest Rates: A New
Methodology for Contingent Claims Valuation. Econometrica 60, 1 (January 1992), 77–105.

[41] Vladimir Janjic, Chris Brown, Kenneth Mackenzie, Kevin Hammond, Marco Danelu�o, Marco Aldinucci, and José Daniel
Garcia. 2016. RPL: A Domain-Speci�c Language for Designing and Implementing Parallel C++ Applications. In
2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP). 288–295.
h�ps://doi.org/10.1109/PDP.2016.122

[42] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline
Parallelism. ACM Trans. Parallel Comput. 2, 3, Article 17 (Sept. 2015), 42 pages. h�ps://doi.org/10.1145/2809808

[43] Joe�rey Legaux, Frdric Loulergue, and Sylvain Jubertie. 2013. OSL: An Algorithmic Skeleton Library with Excep-
tions. Procedia Computer Science 18 (2013), 260 – 269. h�ps://doi.org/10.1016/j.procs.2013.05.189 2013 International
Conference on Computational Science.

[44] Mario Leyton and José M. Piquer. 2010. Skandium: Multi-core Programming with Algorithmic Skeletons. In 2010 18th
Euromicro Conference on Parallel, Distributed and Network-based Processing. 289–296. h�ps://doi.org/10.1109/PDP.2010.
26

[45] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2006. Ferret: A Toolkit for Content-based Similarity
Search of Feature-rich Data. SIGOPS Oper. Syst. Rev. 40, 4 (April 2006), 317–330.

[46] Kirk Martinez and John Cupi�. 2005. VIPS - a highly tuned image processing so�ware architecture. In IEEE International
Conference on Image Processing 2005, Vol. 2. II–574–7. h�ps://doi.org/10.1109/ICIP.2005.1530120

[47] Tiziano De Ma�eis and Gabriele Mencagli. 2016. Keep Calm and React with Foresight: Strategies for Low-Latency and
Energy-E�cient Elastic Data Stream Processing. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). Article 13, 12 pages. h�ps://doi.org/10.1145/2851141.2851148

[48] Timothy Ma�son, Beverly Sanders, and Berna Massingill. 2004. Pa�erns for parallel programming. Addison-Wesley
Professional.

[49] Michael McCool, James Reinders, and Arch Robison. 2012. Structured Parallel Programming (1st ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[50] Gabriele Mencagli, Massimo Torquati, Marco Danelu�o, and Tiziano De Ma�eis. 2017. Parallel Continuous Preference
�eries over Out-of-Order and Bursty Data Streams. IEEE Transactions on Parallel and Distributed Systems PP, 99
(2017), 1–1. h�ps://doi.org/10.1109/TPDS.2017.2679197

[51] John C. Munson and Sebastian G. Elbaum. 1998. Code churn: a measure for estimating the impact of code change. In
Proceedings. International Conference on So�ware Maintenance (Cat. No. 98CB36272). 24–31. h�ps://doi.org/10.1109/
ICSM.1998.738486

[52] Nachiappan Nagappan and �omas Ball. 2005. Use of relative code churn measures to predict system defect density.
In Proceedings. 27th International Conference on So�ware Engineering, 2005. ICSE 2005. 284–292. h�ps://doi.org/10.
1109/ICSE.2005.1553571

[53] Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. 2009. Analytical Modeling of Pipeline Parallelism.
In Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation Techniques (PACT ’09).
IEEE Computer Society, Washington, DC, USA, 281–290. h�ps://doi.org/10.1109/PACT.2009.28

[54] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. 2014. Adaptive, E�cient, Parallel Execution of Parallel Programs.
SIGPLAN Not. 49, 6 (June 2014), 169–180. h�ps://doi.org/10.1145/2666356.2594292

[55] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. 2011. SkelCL - A Portable Skeleton Library for High-Level GPU
Programming. In 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.
1176–1182. h�ps://doi.org/10.1109/IPDPS.2011.269

[56] Tiark Sujeeth, Arvind K.and Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Cha�, Victoria Popic, Michael Wu,
Aleksandar Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle Olukotun. 2013. Composition and Reuse with
Compiled Domain-Speci�c Languages. Springer Berlin Heidelberg, Berlin, Heidelberg, 52–78.

[57] Marco Vanneschi. 2002. �e programming model of ASSIST, an environment for parallel and distributed portable
applications. Parallel Comput. 28, 12 (2002), 1709–1732.

[58] Elaine J. Weyuker. 1988. Evaluating So�ware Complexity Measures. IEEE Trans. So�w. Eng. 14, 9 (Sept. 1988), 1357–1365.
h�ps://doi.org/10.1109/32.6178

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

https://doi.org/10.1142/S0129626417400059
https://doi.org/10.1142/S0129626417400059
https://doi.org/10.1007/s10766-017-0497-y
https://doi.org/10.1145/335191.335372
https://doi.org/10.1109/PDP.2016.122
https://doi.org/10.1145/2809808
https://doi.org/10.1016/j.procs.2013.05.189
https://doi.org/10.1109/PDP.2010.26
https://doi.org/10.1109/PDP.2010.26
https://doi.org/10.1109/ICIP.2005.1530120
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1109/TPDS.2017.2679197
https://doi.org/10.1109/ICSM.1998.738486
https://doi.org/10.1109/ICSM.1998.738486
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/PACT.2009.28
https://doi.org/10.1145/2666356.2594292
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1109/32.6178

33:26 D. De Sensi et al.

[59] William A. Wulf and Sally A. McKee. 1995. Hi�ing the Memory Wall: Implications of the Obvious. SIGARCH Comput.
Archit. News 23, 1 (March 1995), 20–24.

Received June 2017; revised -; accepted -

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 4, Article 33. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 The PARSEC Benchmark Suite
	2.2 Parallel Pattern-based Approaches

	3 Parallel Pattern-based PARSEC
	3.1 A Small Catalog of Parallel Patterns
	3.2 Examples of Parallel Pattern-based Code
	3.3 P3ARSEC Parallel Implementations

	4 Experiments
	4.1 Programming Effort
	4.2 Performance Evaluation
	4.3 Summary of Results

	5 Related Work
	6 Conclusions and Future Work
	References

