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ABSTRACT
High-level parallel programming is a de-facto standard ap-
proach to develop parallel software with reduced time to de-
velopment. High-level abstractions are provided by existing
frameworks as pragma-based annotations in the source code,
or through pre-built parallel patterns that recur frequently
in parallel algorithms, and that can be easily instantiated
by the programmer to add a structure to the development
of parallel software. In this paper we focus on this sec-
ond approach and we propose P3ARSEC, a benchmark suite
for parallel pattern-based frameworks consisting of a repre-
sentative subset of PARSEC applications. We analyse the
programmability advantages and the potential performance
penalty of using such high-level methodology with respect
to hand-made parallelisations using low-level mechanisms.
The results are obtained on the new Intel Knights Landing
multicore, and show a significantly reduced code complexity
with comparable performance.

CCS Concepts
•Computing methodologies → Parallel computing
methodologies; •Software and its engineering→ Par-
allel programming languages; Design patterns; Soft-
ware development techniques;

Keywords
Parallel Patterns, PARSEC Benchmarks, Intel KNL

1. INTRODUCTION
The advent of Chip Multi-Processors (briefly, CMPs) has
brought parallel computing into the mainstream by provid-
ing a decisive contribution to the emergence and ubiquity of
parallel machines in our everyday life. The wide diffusion
of parallel architectures goes together with academic and
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industrial efforts in the design and development of suitable
and easy-to-use parallel programming methodologies.

Parallel programming frameworks offer suitable abstractions
to improve the time-to-development and productivity of par-
allel software. Some of them adopt a pragma-based approach
like OpenMP [1] and OmpSs [2], where the philosophy is
to be as unobtrusive as possible in the modification of the
legacy source code by relying on a compiler that translates
pragmas into a corresponding parallel run-time code. Data
parallel paradigms (parallel-for and reduce) and task par-
allelism (graphs of dependencies) can both be expressed by
the programmer using proper pragma-based directives.

Another approach consists in using high-level parallel pat-
terns that the programmer composes and nests to build par-
allel implementations. Each pattern applies a parallelism
paradigm to solve recurrent problems [3, 4], e.g., map, re-
duce, farm, pipeline, scan, zip are some notable examples.
Frameworks supporting this patterned vision are FastFlow [5],
SkePU [6], Muesli [7], Microsoft PPL [8], Delite [9] and
many others. Patterns are typically C++/Java classes that
the programmer instantiates by providing the business logic
code and some configuration parameters as input arguments
of their constructors. The counterpart is the potential rigid-
ity of the approach when parts of the application that have
to be parallelised do not match any available patterns. For
these reasons, some frameworks like Intel TBB [4] adopt
a sort of hybrid approach, where besides some pre-defined
patterns (e.g., pipeline, parallel-for, reduce, scan) the frame-
work allows general graphs of tasks to be executed by re-
specting their precedence relations.

Recent approaches [9,10] try to raise the level of abstraction.
A solution is based on DSLs (Domain Specific Languages)
built on top of pattern-based frameworks, in order to help
domain experts to easily prototype parallel variants and to
introduce optimisations. A second approach [11–13] consists
in annotating the sequential code with C++11 attributes in
order to introduce a parallel pattern in a region of code (usu-
ally a compute-intensive kernel). A source-to-source com-
piler is responsible to translate the annotated code into a
parallel code linked to a parallel run-time library.

Besides the programmability advantage, a crucial point is
to understand which is the performance gap in using such
frameworks. What is the performance loss of a high-level
approach with respect to developing a hand-made parallelisa-
tion using low-level mechanisms? An interesting work that



tries to answer this question for a pragma-based framework
is the one in [14], which shows that the OmpSs porting of
some parallel programs of the PARSEC benchmark suite [15]
do not suffer substantial performance degradation with re-
spect to Pthreads counterparts, and have a reduced code
complexity in terms of lines of codes. Our contribution with
this paper is to provide a similar analysis for pattern-based
frameworks which are more expressive in exposing the par-
allel structure than pragma-based approaches. As far as we
know, this analysis for the PARSEC is missing in the litera-
ture, and it is important because this suite is representative
of a wide range of application domains, from HPC to desk-
top and server applications. Our contributions are:

• a representative subset of PARSEC applications has
been implemented in the FastFlow pattern-based frame-
work [5]. In this analysis we identify which pattern
composition is useful to implement each application;

• we experimentally prove that the pattern-based method-
ology is capable of reducing the programming effort by
achieving performance comparable to optimised hand-
made parallelisations based on Pthreads;

• the experimental evaluation has been performed on a
novel parallel CMP, i.e. the second generation (Knights
Landing) Intel Xeon Phi architecture. We highlight
that PARSEC performance results on such CMP are
meaningful themselves, because of the still limited avail-
ability of this multi-core architecture to most of the
scientific community;

• we start building a benchmark for parallel patterns
based applications (we call this benchmark P3ARSEC –
Parallel Patterns PARSEC), releasing it as open source1.
Furthermore, the pattern characterisation described in
this paper can be implemented in all the parallel frame-
works that offer the needed patterns, thus not limited
to FastFlow.

The outline of this paper is the following. Sect. 2 introduces
a brief description of the selected PARSEC applications.
Sect. 3 presents the used patterns and their implementa-
tion in FastFlow. Sect. 4 provides details of the new Intel
Phi and presents the experimental results. Finally, Sect. 5
provides the conclusions of this work.

2. APPLICATIONS
In this section we introduce the basic characteristics of the
PARSEC benchmarks. Then, we describe in detail the sub-
set of benchmark applications selected for the performance
evaluation of the pattern-based methodology that will be
described in Sect. 3.

2.1 The PARSEC Benchmark Suite
The Princeton Application Repository for Shared-Memory
Computers (PARSEC) [15] is a benchmark suite of state-of-
the-art, computationally intensive multi-threaded programs.
The suite focuses on emerging workloads and was designed

1https://github.com/paragroup/p3arsec

to be representative of next-generation shared-memory pro-
grams for CMPs. PARSEC2 is composed of 13 programs
coming from different areas of computing. Each application
is provided with several input sets, including a native set
which is representative of real applications.

The PARSEC suite is interesting from the high-level parallel
programming perspective, because its applications are char-
acterised by different memory access behaviours, different
data sharing patterns using different synchronisation mech-
anisms and workloads. Table 1 reports the official name of
the benchmarks and their parallel execution model.

Parallelism Model Applications

Data Parallel

blackscholes, fluidanimate,freqmine,

streamcluster, swaptions, facesim,

vips, raytrace, bodytrack

Unstructured Parallelism canneal

Stream Parallel dedup,ferret, x264

Table 1: Parallelism models of the PARSEC applications.

Data parallel applications work on large data structures
partitioned among threads that execute all the computa-
tion phases on their partitions. Stream parallelism char-
acterises applications where threads execute distinct com-
putation phases on different data items in parallel. The
case of canneal is representative of applications that do not
straightforwardly follow any common parallelism model.

2.2 Selected PARSEC Benchmarks
Among all PARSEC benchmarks, we have selected a repre-
sentative subset for our analysis which consists of five pro-
grams: swaptions, blackscholes, ferret, dedup and can-

neal. This subset has been carefully selected in order to
show the best and worst-case performance on the new Intel
Xeon Phi (Knights Landing) and to exemplify the applica-
tion of the pattern-based methodology to a set of computa-
tions belonging to all the parallelism models present in PAR-
SEC. The first two applications, swaptions and blacksc-

holes, are both data-parallel applications. However, dif-
ferently from swaptions, blackscholes computation is also
iterative. Instead, ferret and dedup both use the stream
parallelism model, however they have typically shown dif-
ferent scalability results on past PARSEC evaluations [14]
owing to the different synchronisation mechanisms used in
the computation (dedup makes use of locks which are ab-
sent in ferret) and to intrinsic applications characteristics.
Finally, canneal has been chosen because it is the only ex-
ample of unstructured parallelism in the suite.

In the following part of this section we provide a brief de-
scription of the five selected applications. A summary of the
main characteristics of these benchmarks together with the
available PARSEC implementations, is reported in Table 2.

Swaptions this application uses the Heath-Jarrow-Morton
(HJM) framework to price a portfolio of swaptions. The
Pthreads version partitions the array into a number of

2In this paper we refer to the PARSEC version 3.0.



Benchmark Domain Parallelism Versions

Model Synchronisation Grain

swaptions Financial Analysis Data Parallel dataflow coarse Pthreads, Intel TBB

blackscholes Financial Analysis Data Parallel dataflow coarse Pthreads, OpenMP, Intel TBB

ferret Similarity Search Stream Parallel dataflow medium Pthreads, Intel TBB

dedup Enterprise Storage Stream Parallel dataflow/locks medium Pthreads

canneal Simulated Annealing Unstructured locks/atomic fine Pthreads

Table 2: Characteristics of the selected PARSEC v3.0 benchmark applications.

blocks equal to the number of threads and assigns one block
to every thread. Each thread computes the price of all the
swaptions in its work unit.

Blackscholes this application is an Intel RMS benchmark.
It analytically calculates the prices for a portfolio of Eu-
ropean options with the Black-Scholes partial differential
equations (PDE). The Pthreads implementation divides
the portfolio into work units (one for each available thread).
Then, each thread calculates the prices for its corresponding
options. The algorithm is iterated multiple times to obtain
the final estimation of the portfolio.

Ferret: this application is based on the Ferret toolkit which
is used for content-based similarity search of feature-rich
data such as audio, images, video, and 3D shapes. The
toolkit has been configured for image similarity search. The
Pthreads implementation decomposes the application into
six pipeline stages. The first and last stages are implemented
as a single thread. The middle stages are configured with a
thread pool each. Communication channels between pools
are implemented using queues of fixed size (the default is 20
entries). The pipeline is sketched in Fig. 1.
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Figure 1: General scheme of the Ferret application.

Dedup: this application compresses a data stream with a
combination of global and local compression called “dedu-
plication”. The Pthreads version implements a pipeline
with five stages, each middle stage is implemented with a
thread pool (the first and last stages are single-threaded).
To lower the contention on communication channels, coop-
eration between two stages is implemented using multiple
queues of fixed size. Each queue is then assigned to a sub-
set of threads in the pool. Fig. 2 shows a representation of
the dedup processing pipeline. Differently from ferret, it
is not a linear chain of stages, as results coming from the
third stage can be transmitted directly to the last stage by-
passing the fourth stage. Furthermore, the second stage can
generate more output items per input item.
Canneal: this application uses cache-aware simulated an-
nealing to minimise the routing cost of a chip design. It
uses fine-grained parallelism with a lock-free algorithm and a
very aggressive synchronisation strategy based on data race
recovery instead of avoidance. The Pthreads implemen-

Input File

Fragment
queue

Refine

Results

Deduplication Compress Re-order

Single
Thread

Single
Thread

Thread 
pool

Thread 
pool

Thread 
pool

Figure 2: General scheme of the Dedup application.

tation picks pairs of pseudo-random elements of the graph
and swaps them until the whole computation converges to
an optimal solution. If the swap decreases the routing cost,
the swap is automatically accepted. No locks are used to
protect the list from concurrent accesses and swap opera-
tions are done using atomic CAS instructions. However, the
evaluation of the elements to be swapped is not done atom-
ically, thus, due to simultaneous swaps performed by other
threads, it may happen to find a solution that increases the
routing cost. In that case the algorithm performs a rollback
step by swapping the elements again.

3. PARALLEL PROGRAMMING WITH
PATTERNS

Pattern-based frameworks provide a large set of parallel pat-
terns that solve recurrent problems. Some notable exam-
ples are: sequential composition, map, reduce, pipeline, farm,
divide-and-conquer, scan, stencil, parallel-for. In the follow-
ing we briefly review the patterns that we used in the paral-
lelisation of the selected PARSEC benchmark applications
described in Sect. 2.2.

3.1 Used Patterns
Sequential (seq): this simple pattern describes a portion
of the ”business logic” code of the application. The imple-
mentation usually requires to wrap the code in a function
hosting input and output parameters (f : α → β). The
function f is executed sequentially.

Sequential Composition (seqcomp): this pattern describes
the composition of two sequential patterns. Given two se-

quential patterns f1 : α → β and f2 : β → γ, then the
sequential composition is f2(f1(x)) : α → γ where x : α
is the input data. The seqcomp is executed sequentially.

Pipeline (pipe): the pattern computes in parallel several
stages on a stream of items. Each stage processes data pro-
duced by the previous stage in the pipe and delivers re-
sults to the next stage. If the i-th stage of the pipeline
computes a function fi, for each stream item x an item



fn(fn−1(. . . f1(x) . . .)) is delivered in the pipeline output
stream. Pipeline stages are executed in parallel.

Task-Farm (farm): This pattern computes in parallel the
same function f : α → β over all the items appearing in
an input stream of type α stream delivering the results on
the output stream of type β stream. The model of com-
putation of the task-farm pattern consists of three logical
entities: the Emitter that is in charge of accepting input
data streams, in a data-flow or non-deterministic way, and
to assign the data to the Workers; a pool of Workers which
compute the function f in parallel over different stream
elements; the Collector that non-deterministically gathers
Workers’ partial results and eventually produces the final
result. The Emitter, the set of Workers and the Collector
interact in a pipeline fashion using a data-flow model which
can be implemented in several different ways depending on
the target platform. For example, the Emitter and Collec-
tor, could be implemented in a centralised way using a single
thread, or in a partially or fully distributed way. In some
cases, the Emitter and Collector are implemented using a
passive data structure. A farm’s workers can be any other
patterns. An interesting result concerning composition of
pipe and farm patterns is the following [16]:

pipe(seq(f1), seq(f2)) ≡ farm(seqcomp(f1,f2), n)

where n is a non-functional parameter representing the num-
ber of Workers in the farm pattern. In the general case,
input/output data ordering may be altered due to the dif-
ferent relative speeds of the workers executing the distinct
stream items. If ordering is important, it can be enforced
by the Collector or by the scheduling/gathering policies of
the farm pattern. We call ofarm the instance of the farm

pattern that preserves input/output ordering.

Master-Worker : this is a specialisation of the task-farm

pattern where the Emitter and Collector are collapsed in a
single entity (called master). The Workers deliver computed
results back to the master. The master schedules received
input tasks toward the pool of workers trying to balance
their workload.

Map: this is a data parallel pattern. It computes a given
function f : α → β over all the data items of an input
collection whose elements have type α. The output produced
is a collection of items of type β. Given the input collection
x1, x2, . . . , xN , the output collection is y1, y2, . . . , yN where
yi = f(xi) for i = 1, 2, . . . , N . Since each data item in
the input collection is independent from the other items,
all the elements can be computed in parallel. The model
of computation of the map pattern is very similar to the one
described for the farm pattern. The difference lies in the fact
that the farm patterns works on a stream of independent
data (the stream may be unbounded), while the map pattern
receives a data collection of a fixed number of items that is
partitioned among the available computing resources.

Pattern Iterator (p-iterator): The pattern iterates the
computation of a nested pattern until a given condition is
true. Given a pattern computing the function f : α → α,
a state S, a boolean predicate P : α × S → {true, false}
and a state update function U : α × S → S, this pattern
computes the pattern function f until the predicate is not
true. If the predicate is false, the output element is used

as input to compute the nested pattern again. The parallel
semantics of this pattern is the one of the inner pattern,
which can be a stream-based parallel pattern as a farm or
a pipe or a data-parallel pattern like a map. This pattern
is often used for iterating data-parallel kernel computations
up to a convergence criterion.

3.2 Benchmarks Parallelisation
In this section, we discuss how the selected PARSEC appli-

cations can be parallelised by using the parallel patterns
introduced in the previous section. For each benchmark
we first describe the implementations closest to the native
Pthreads version. Then, we briefly outline alternative
implementations that can be obtained by exploiting paral-
lel patterns composability. To exemplify the pattern-based
methodology, we use the FastFlow framework [5].

Swaptions: this benchmark models a data parallel compu-
tation. It can be implemented as a single map pattern since
it works on a collection of items representing the swap-
tions portfolio. The FastFlow implementation is based on a
parallel-for loop that implements the map pattern when it is
not nested in a pipe or farm patterns.

Blackscholes: this benchmark models an iterative compu-
tation. Its parallel behaviour can be modelled as a p-iterator

pattern, where the internal pattern is a map computation be-
cause the input is a collection of items composing the port-
folio. In the FastFlow framework, this benchmark can be
implemented using different parallel patterns. We selected
the ff Map pattern that allows iterating a parallel-for (and
a parallel-for-reduce) pattern inside a sequential loop as in
Listing 1. It is worth pointing out that, the FastFlow map

can also be used as a pipeline stage or a farm worker to
model complex streaming networks of nested patterns. In
the code the svc method executes the code of the pattern.

Listing 1: FastFlow implementation of the blackscholes
benchmark.

1 s t r u c t B l a ckScho l e s : f f Map<vec wi> {
2 B la ckScho l e s ( . .< i nput > . . . ) { . . . }
3 ve c w i ∗ s vc ( v e c w i ∗ i n ) {
4 f o r ( l ong i =0; i<n I t e r ;++ i )
5 p a r a l l e l f o r (0 , in−>s i z e ,
6 [& i n ] ( con s t l ong k ) { . . . }) ;
7 r e t u r n i n ;
8 }} BS(< i nput >) ; // i n s t a n c e o f the f f Map
9 BS . r un and wa i t end ( ) ;

Ferret: this is a streaming computation that can be mod-
elled using the pipe pattern. Pipeline stages do not update
any shared state concurrently and stream elements can be
computed independently. Therefore, the four middle stages
can be parallelised with a farm pattern, whereas the first
and last stages, that are in charge of I/O operations, are
seq patterns. We have the following nest of patterns that
describe the ferret benchmark:

pipe(seq(Load), farm(Segment,n), farm(Extract,n),
farm(Index,n), farm(Rank,n), seq(Output))

This nesting of patterns can be easily implemented in Fast-
Flow by encapsulating each function in a sequential Fast-
Flow node (ff_node) and using the ff_Farm and ff_Pipe

patterns directly provided by the framework (see Listing 2).



Listing 2: FastFlow implementation of the ferret bench-
mark.

1 s t r u c t Load : f f n o d e t<long , l oad da ta> {
2 l o a d da t a ∗ s vc ( l ong ∗) { . . . } ;
3 } I n ;
4 s t r u c t Segment : f f n o d e t< l o ad da ta , s eg data> {
5 s e g da t a ∗ s vc ( l o a d da t a ∗ i n ) { . . . } ;
6 } ;
7 s t r u c t Ex t r a c t : f f n o d e t<s eg data , e x t r d a t a> {
8 e x t r d a t a ∗ s vc ( s eq da t a ∗ i n ) { . . . } ;
9 } ;

10 s t r u c t I ndex : f f n o d e t<e x t r d a t a , v e c que r y da t a> {
11 v e c qu e r y d a t a ∗ s vc ( e x t r d a t a ∗ i n ) { . . . } ;
12 } ;
13 s t r u c t Rank : f f n o d e t<ve c que r y da t a , rank data> {
14 r ank da ta ∗ s vc ( v e c qu e r y d a t a ∗ i n ) { . . . . } ;
15 } ;
16 s t r u c t Output : f f n o d e t<rank data> {
17 vo i d ∗ s vc ( r ank da ta ∗ i n ) { . . . } ;
18 } Out ;
19

20 f f P i p e<> p i p e ( In ,
21 make Farm<Segment , n>() ,
22 make Farm<Ext rac t , n>() ,
23 make Farm<Index , n>() ,
24 make Farm<Rank , n>() , Out ) ;
25 p i p e . r un and wa i t end ( ) ;

Finally, it is worth noting that a pipe with parallel stages
(each one instantiating a farm) can be easily transformed
into a farm whose workers are internally parallel (they are
pipe of sequential stages) or sequential (comp). Other trans-
formations are possible. The implementation of this last
transformation in FastFlow can be obtained by replacing
lines 20-25 in Listing 2 with the code in Listing 3.

Listing 3: ferret implementation as a single farm.

1 f f Fa rm<> farm (
2 make Comp<Segment , Ex t rac t , Index , Rank>() ,
3 n , In , Out ) ;
4 farm . r un and wa i t end ( ) ;

Dedup: the Pthreads version of this benchmark has been
parallelised by using a pipeline model with five stages. The
first stage (Fragment) reads the data stream from the disk
and then partitions the data at fixed positions; then, it pro-
duces in output a stream of data chunks. Each chunk can be
processed independently from the other chunks. The second
stage (Fragment Refine) further partitions the input chunk
into smaller fine-grain chunks generating a nested stream.
The third stage is Deduplication. It checks if the chunk has
already been compressed in the past by accessing a hash ta-
ble. If so, the chunk is marked as duplicate. Compress is the
fourth stage where chunks, if not marked as duplicate, are
compressed and the corresponding table entry is updated.
To ensure correctness in the access to the database per-
formed by Deduplication and Compress threads, each bucket
in the hash table is protected with a lock. Eventually, the
Reorder stage writes the final compressed output data into
the output file. If the chunk was marked as duplicate, it
stores a “reference” to the corresponding chunk. This stage
reorders the data chunks as they arrive to match the origi-
nal order of the uncompressed data. This stage represents

the main bottleneck of the dedup pipeline, both due to data
reordering and to I/O.

With minimal modification to the original PARSEC code we
can implement it with a FastFlow pipeline pattern with the
following logical structure:

pipe(seq(Fragment), farm(Refine,n),
farm(Deduplication,n),farm(Compress,n),seq(Reorder))

As in the ferret benchmark, the original pattern scheme
of the application can be straightforwardly implemented in
FastFlow. Also in this case it is possible to implement sev-
eral parallel variants resulting from different nesting of pipe
and farms and different composition of stages. Composition
is possible even though some of them keep an internal state
because the concurrent access to the state is lock-protected.

Since obtaining the farm version is trivial, we can derive as
well an ordered farm version called ofarm in which the pat-
tern guarantees to maintain in output the same ordering of
the input. In such a case, since the ordering of the elements
is implicit in the pattern, the Reorder stage can be replaced
by a simpler stage that only performs the writing of the el-
ements on the disk. Exploiting the ordering property of the
pattern instead of performing it from scratch leads to advan-
tages both in terms of code complexity and performance, as
we will show in Section 4.

Canneal: the Pthreads version of this benchmark follows
an unstructured interaction model among threads. This ap-
plication can be implemented by using a master-worker pat-
tern where the workers are sequential pattern instances and
the master is in charge of: i) implementing the barrier be-
tween two phases; ii) evaluating the termination condition;
iii) (re-)starting the workers computation if the termination
condition is false. In FastFlow the master-worker pattern
is provided with the make_MasterWorker function as shown
in Listing 4.

Listing 4: FastFlow implementation of canneal.

1 // Worker d e f i n i t i o n s u b c l a s s i n g f f n o d e t
2 // Master d e f i n i t i o n s u b c l a s s i n g f f n o d e t
3 auto mw = make MasterWorker<Master , Worker , n>() ;
4 mw. run and wa i t end ( ) ;

4. EVALUATION
In the first part of this section, we provide detailed infor-
mation about the second-generation Intel Xeon Phi based
on the Knights Landing (KNL) architecture. In the second
part, we describe the performance and code complexity re-
sults of the selected PARSEC applications run on the KNL.

4.1 Knights Landing Architecture
With respect to the first-generation Intel Xeon Phi (co-
dename Knights Corner, KNC), the KNL version is also
shipped as a standard standalone architecture [17]. The
KNL architecture represents a performance jump compared
with the previous KNC version, with a renewed on-chip in-
terconnection network, memory sub-system with empowered
performance for scalar and vector instructions. The KNL



CPU has at most 36 active tiles (see Fig. 3), each one com-
posed of two cores, two vector processing units (VPUs) per
core and 1MB L2 Cache shared between the two cores. The
core internal architecture is derived from Intel Atom core: it
is a two-wide out-of-order core with 4 hyper-threaded con-
texts. In addition, each core has a private L1d cache of
32KB.
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Figure 3: Knights Landing internal architecture.

KNL supports legacy x86 instructions. In addition, it intro-
duces (as its predecessor) the AVX-512 instruction set which
provides support for 512-bit-wide vector instructions. Tiles,
memory controllers, I/O controllers and other chip compo-
nents are interconnected through a 2D mesh. The mesh
supports the MESIF cache coherent protocol. The KNL
supports two levels of memory: multi-channel 3D-stacked
DRAM (MCDRAM) and double rate (DDR4) memory. The
former, is a 16GB high bandwidth memory offering more
than 400 GB/sec of bandwidth. It is composed by 8 modules
of 2 GB each, integrated on the same package and directly
connected to the processor. In addition, KNL has six DDR4
channels for standard external memory.

The processor used for the experiments in this paper is the
Intel Xeon Phi KNL model 7210. The CPU has 64 cores,
running at 1.30 GHz. The machine is equipped with 96 GB
of RAM. The installed OS is a Linux version kernel 3.10. For
the experiments we disabled the power saving feature of the
CPU, i.e. the cores run at the maximum frequency. In the
used configuration, the mesh is used in quadrant mode [17],
while the 16 GB MCDRAM is used in cache mode [17] (stan-
dard configuration suggested by the vendor for most of the
workloads). The code has been compiled with the gcc com-
piler version 4.8.5 with the -O3 optimisation flag.

4.2 Results
For the evaluation we used the PARSEC native input set,
in order to obtain results representative of real-world pro-
gram executions. Among the various parameters, the tool
takes as input the number n of threads to use. Actually,
this number does not always coincide with the total num-
ber of threads effectively used. For example, in dedup and
ferret, this number corresponds to the number of threads
activated on each parallel stage of the pipeline. We kept the
same semantics even for FastFlow versions. As for all the

PARSEC benchmarks, the time measured is the one spent
in the so called region of interest (ROI), which includes all
part sensible to the parallelisation. That part includes the
setup time of the run-time framework. Each program has
been run multiple times and average results are shown (the
standard deviation is always small). All the benchmarks
have been executed with the original parameters provided
by PARSEC. If present in the PARSEC distributions, the
OpenMP and TBB versions have also been executed.

This work has been engineered as a PARSEC plug-in. Ac-
cordingly, it is possible to add the parallel patterns imple-
mentation of the benchmarks along with the already present
Pthreads, OpenMP and TBB version, and to run them
using the parsecgmt tool provided by PARSEC.

Fig. 4 shows the speedups achieved for the different bench-
marks. It has been computed considering the execution time
of the PARSEC serial version of the program. In swaptions

(Fig. 4a), due to the specific native input provided by PAR-
SEC, it is possible to run the benchmark with at most 128
threads. TBB version exhibits the lowest speedup among
the existing implementations, probably due to the excessive
overhead required to manage small chunks of swaptions. The
parallel pattern implementation is characterised by a perfor-
mance very close to the Pthreads version. For blacksc-

holes (Fig. 4b) all the different implementations exhibit a
good speedup. This is a consequence of the fact that this
is essentially an embarrassingly parallel computation. Even
for ferret (Fig. 4c) the parallel pattern implementation is
comparable to the Pthreads one. The TBB version is not
shown since it has a different structure with respect to the
Pthreads one. However, we will show its best performance
result in Fig. 5. In the dedup plot (Fig. 4d), the Pthreads
version is compared with its corresponding implementation
using patterns (that is a pipe of farms stages). The paral-
lel pattern FastFlow version is better performing than the
Pthreads one owing to the characteristics of the FastFlow
run-time. In this particular case, this is caused by the dif-
ferent implementations of the communication channels be-
tween pipeline stages. In canneal (Fig. 4e), the Pthreads
and FastFlow versions achieve a comparable speedup. The
performance peak is reached at different concurrency levels.
This effect is caused by the difference in the mechanisms
used to perform a global synchronisation between threads.
Indeed, in the FastFlow version the synchronisation is per-
formed by the master thread, which is slightly more efficient
for lower parallelism degree than the pthread_barrier used
by the Pthreads version.

4.3 Alternative Versions
After we compared the existing implementations provided
by PARSEC with the most similar parallel pattern imple-
mentations, we now analyse different alternative parallel
pattern solutions for ferret and dedup. These versions have
been derived by implementing a different nesting of patterns
without adding extra code, such as for example the farm of
pipes (farm(pipes)) and farm of seqcomp (farm(seqcom)).

For dedup, we also implemented a new version based on the
ofarm(seqcomp) pattern. This version required: i) to add
a few lines of extra code in the Compress stage; ii) to re-
move the code used for data reordering management in the
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Figure 4: Speedup of the five selected applications using different parallel frameworks and Pthreads.

Reorder stage. The ofarm version is not shown for ferret

since data ordering is not needed by this application. Ta-

pipe(farms) farm(pipes) farm(seqcomp) ofarm(seqcomp)

dedup 6.69 5.64 6.56 7.02

ferret 51.43 49.72 51.30 N.D.

Table 3: Best speedups of different parallel patterns for
dedup and ferret.

ble 3 reports the maximum speedup achieved in the different
implementations. The best dedup implementation is char-
acterised by a 25% performance improvement with respect
to the less performing one, thus highlighting the importance
of programming abstractions to allow a rapid prototyping of
different alternative versions of the application.

4.4 Final Analysis
We compared the code developed using FastFlow with the
one of the Pthreads implementation. We used two met-
rics: Lines of Code (LOC) and the Cyclomatic Complexity
(CC), which measures the number of linearly independent
paths through a source code, i.e. the higher the CC index
the higher the code complexity. For this comparison, we
considered only the source files which differ between the two
implementations, excluding comments and empty lines.

The results are summarised in Table 4. For each benchmark,
we consider the best performing parallel pattern implemen-
tation among those described and we focus on the lines of
codes of the parallel region. For all the benchmarks we re-
duced the lines of code with respect to the Pthreads version
(up to 42.4% for ferret). Also the CC has been reduced
for all the benchmarks, with a significant reduction in the
dedup case, where the complexity due to the ordering of the

results and explicit management of communication between
stages has been reduced since it is embedded in the pattern
itself. In addition to that, the performance are usually com-
parable with those obtained by the hand-written Pthreads
version. In the dedup case, a performance improvement of
17% is obtained. This is caused both by intrinsic differences
in the run-time but also by a more efficient management of
the reordering of the processed elements (ofarm version).

Benchmark Pattern
LOC

Reduction
CC

Pthreads
CC

FastFlow
Perf.
Gain

Swaptions map 17.9% 22 20 3.7%

Blackscholes p-iterator(map) 1.2% 244 238 -6.3%

Canneal master-worker 2.1% 21 23 0

Dedup ofarm(seqcomp) 32.04% 284 124 17.14%

Ferret pipe(farms) 42.4% 92 42 -3.2%

Table 4: Summary comparison of the original Pthreads
versions against the best parallel pattern versions.

Finally, Fig. 5 shows, for all benchmarks, the best execu-
tion times, normalised to the Pthreads time, obtained by
varying the PARSEC -n parameter up to 256. Accordingly,
values lower than 100 represent solutions with an execution
time lower than the one of the Pthreads implementation.

5. CONCLUSIONS
In this paper we proposed P3ARSEC, a benchmark for par-
allel pattern-based frameworks. The selected applications
are a representative subset of the standard PARSEC bench-
marks suite. We have identified which pattern composition
is useful to parallelise each application, then we experimen-
tally showed that the pattern-based methodology is able to
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reduce the code complexity measured in terms of Lines-Of-
Code and Cyclomatic Complexity.
The experimental results showed that the performance ob-
tained are comparable with those achieved by native PAR-
SEC implementations based on Pthreads. Furthermore,
we showed how the proposed methodology allows alterna-
tive parallel solutions to be easily defined with a limited ef-
fort, obtaining in some cases even better performance with
respect to the reference parallel solution. The experiments
has been conducted on the new Intel Knights Landing CMP.

Several future extensions of this work can be devised, the
most interesting are: i) the integration in P3ARSEC of other
benchmarks to further validate the results obtained in this
work; ii) to compare the programmability effort and per-
formance figures with respect to other parallelisation ap-
proaches as for example the pragma-atic one proposed in [14].
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