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Abstract. Reconfiguration of parallel applications has gained traction with the in-
creasing emphasis on energy/performance trade-off. The ability to dynamically
change the amount of resources used by an application allows reaction to changes
in the environment, in the application behavior or in the user’s requirements. A pop-
ular technique consists in changing the number of threads used by the application
(Dynamic Concurrency Throttling). Although this provides good control of appli-
cation performance and power consumption, managing the technique can impose a
significant burden on the application programmer, mainly due to state management
and redistribution following the addition or removal of a thread. Nevertheless, some
common state access patterns have been identified in some popular applications.
By leveraging on this knowledge, we will describe how it is possible to simplify
the state management procedures following a Concurrency Throttling operation.
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1. Introduction and Motivation

In recent years power consumption management has become a major concern for data
center operators due to economic cost, reliability problems and for environmental rea-
sons [16]. To dynamically control the power consumption of an application, a commonly
used approach consists in changing the amount of resources allocated to the application
(i.e. its configuration). This can be achieved by acting on the number of cores allocated to
the application [3], on the clock frequency of these cores [2], on the types of cores used
by the application [18] or on a combination of those [11]. The application is monitored
throughout its execution and the configuration is adapted by considering the user prefer-
ences, the interference caused by external factors (e.g. other applications) and possible
workload fluctuations.

Concurrency throttling is one of the most commonly used techniques [7,4,17,19]
and consists in dynamically changing the number of threads used by the application. By
reducing the number of threads, if we had one thread for each core, the application may
release some cores, thus allowing the operating system to shut them down and so reduce
the overall power consumption of the computing architecture. In some cases, like for
example in OPENMP, this can only be done between two parallel sections (e.g. between
two different parallel fors). On the other hand, other approaches apply this technique

1Corresponding Author: Daniele De Sensi, Computer Science Department, University of Pisa, Italy; E-mail:
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inside a single parallel section, requiring, however, a proper management of the internal
state [11].

An alternative approach, is thread packing [2]. Instead of changing the num-
ber of threads, they are simply moved onto a smaller set of cores, not requiring any
user/programmer intervention. However, as we have shown in [6] this technique is usu-
ally less efficient. For example, consider the scenario depicted in Figure 1, outlining the
performance of the CANNEAL [5] application when a different numbers of cores are
used. In this case, due to contention on shared resources, activating the maximum num-
ber of threads is not the best solution, since the best performance is obtained by using
128 threads. However, the maximum performance peak is only achievable by using con-
currency throttling, i.e. by reducing the number of threads from 256 to 128. The same
cannot be achieved by thread packing, i.e. by placing 256 threads on 128 cores, as shown
in Figure 1, since there would still be high contention. In addition to that, there are situ-
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Figure 1. Comparison of concurrency throttling and thread packing on canneal application.

ations where the thread packing black-box approach is not sufficient, and we need to op-
erate on individual parts of the application. Consider for example Figure 2, showing the
structure of the FERRET application, distributed with the PARSEC benchmark [1]. This
application is structured as a pipeline, where some of the stages are replicated between
multiple threads (tread pool). In this situation, we need to be able to operate on each in-
dividual stage. For example, if the Index stage is too fast and is spending most of its time
waiting for data, we may wish to remove a thread from its pool, thus releasing a core.
However, if thread packing is used, we would just remove a core from the application,
without any guarantee that this would be removed from the Index stage. The ability to
distinguish different parts of the application is important and can only be achieved by
directly changing the number of threads of (a part of) the application.
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Figure 2. Ferret application structure.

A similar structure can be found in other co-running applications (e.g. DEDUP in
the PARSEC benchmark). Thread packing, however, can still be effectively used on some
applications, e.g. on master-worker or thread pool applications where (almost) all the
threads are homogeneous.
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Dynamically changing the number of threads used by the application is a complex
and costly operation, and may require some support from the application programmer.
Consider for example a parallel application for computing the sum of two matrices. In
this case, we would split the matrices between the threads and then each thread would
compute the sum over its submatrix. If we dynamically add a thread during the compu-
tation, we need to redistribute the two matrices to let the new thread have some work to
perform. This means that the application must be paused, the thread must be added, and
the remaining part of the computation needs to be redistributed among the new number
of threads. Eventually, the application can be resumed. Thus, even for such a simple case,
applying concurrency throttling requires extra effort from the programmer (to compute
the new partitions) and may also lead to performance issues (due to the pause/resume of
the application). These problems are exacerbated for more complex applications where
interactions and synchronization among threads is not so trivial. If the application is pro-
grammed by using a dataflow execution model, the number of threads is usually always
reconfigurable since the reconfiguration occurs at the runtime level and the structure of
the application specified by the programmer is not modified. However, in this case the
problem is simply shifted from the application programmer to the programmer of the
dataflow support, as shown in [8].

Recently there has been an attempt to establish a firm basis for developing stateful
parallel applications by classifying them according to their state access pattern [9]. In
a nutshell, six patterns have been identified for modelling typical stateful stream paral-
lel applications. They can be classified by the extent and way in which the state can be
structured and accessed by the application. By optimizing each individual pattern, the
optimization will automatically benefit all applications characterized by a given pattern.
Although they have been presented as patterns for streaming applications, they could
actually be applied to any iterative application, by considering as a stream element the
element processed at a specific iteration. State access patterns are orthogonal to paral-
lelism exploitation patterns (i.e. parallel patterns or skeletons). Indeed, while the former
express the way in which the state is accessed by the different modules composing the
parallel application, the latter express how these modules are organized and connected to
each other.

The main contribution of this work is to provide a set of techniques and appropriate
programming interfaces for managing state access and concurrency throttling in stateful
streaming applications (i.e. classic streaming applications with non-trivial internal state),
thus reducing the effort required to the programmer. A trivial solution would be to just
stop the application, perform all the actions required to redistribute the internal state and
then resume the application. However, this is a costly operation and we would like to ex-
ploit the knowledge about the structure of the application to implement pattern-specific
reconfiguration procedures to minimize the performance impact. Concurrency throttling
hints for stateful streaming patterns were described briefly in [9]. In the current work we
will analyze more deeply the implications of applying concurrency throttling, providing
pattern-specific reconfiguration designs, together with an appropriate C++ interface. We
believe that this is an important step in providing appropriate reconfiguration mecha-
nisms, due to the increasing effort carried out by both research [11,2,10] and industrial
communities 2 3 in building applications able to dynamically adapt themselves.

2https://aws.amazon.com/autoscaling/getting-started/
3https://cloud.google.com/compute/docs/autoscaler/
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The rest of this paper is structured as follows. Section 2 describes some existing
state access patterns and provides an appropriate API to reduce the burden of state re-
configuration on the programmer. Section 3 outlines techniques that can be applied for
managing concurrency throttling and Section 4 presents some experimental results. In
Section 5 we outline related work and, finally, in Section 6 we draw conclusions and
outline some possible future directions for this work.

2. State Access Patterns

In this Section we will briefly outline some of the state access patterns described in [9].
For each of these patterns, we will propose in Section 3 some possible strategies for
applying concurrency throttling.

2.1. All-or-None Pattern

This pattern occurs in streaming applications where some input stream elements can
modify the internal state while some other elements trigger a read-only operation. The
rationale is that elements triggering read-only operations can be executed in parallel,
while elements modifying the internal state must be executed sequentially in order to
preserve the semantics of the application. For example, in a financial auto-quoting system
some operations (typically less frequent) may modify the market state (i.e. buy and sell
proposals), which must be executed in their arrival order, while more frequent operations
are queries that do not modify the market state (e.g., search for the best proposals for
a given stock symbol). Accordingly, the user needs to specify a predicate P such that
P(xi) = true if the stream element xi modifies the internal state and P(xi) = f alse
otherwise. This pattern may be implemented with a master-worker parallel pattern, and
by sharing the internal state between the master and the workers. When a stream element
xi is received, if P(xi)= f alse, it is scheduled to one of the workers. If P(xi)= true, the
computation on the element will be executed by the master. However, since this element
will modify the internal state, such computation can only start after all the previous
stream elements have been executed (since they need to be executed on the old state).
To ensure this it is sufficient to keep a global atomic counter of the elements currently in
the application (both enqueued to the workers or currently processed). The master will
increment this counter every time that an element is scheduled to a worker. Each worker
will decrement the counter after it terminates the execution of an element. When the
counter is equal to zero, the master can start the execution of the element that modifies
the internal state, since all the previous stream elements have already been processed in
the proper order.

The pattern interface would be as follows:

1 template <typename S, typename IN, typename OUT> class AllOrNone{

2 S _state;

3 public:

4 AllOrNone(bool (*predicate)(const IN& element),

5 OUT (*readOnly)(const S& state, const IN& element),

6 OUT (*readWrite)(S& state, const IN& element));

7 };
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The pattern is instantiated by providing the predicate P the readOnly operation
and the operation that can modify the internal state (readWrite). When instantiating the
pattern, the types of the input (IN) and output (OUT) streams are specified, as well as the
state type.

2.2. Fully Partitioned Pattern

In applications characterized by this state access pattern, the state can be modeled as a
vector v4, where each element accesses only a specific location of the vector. To decide
which element v[i] is accessed by the stream element xi, a function H (effectively a hash
function) must be provided by the user, such that element v[H (xi)] is accessed. Another
condition holding for such applications is that if two stream elements access the same
vector location, they must be executed in the order they are received by the application.
This pattern can be implemented with a master-worker parallel pattern. Each worker
manages a contiguous partition of the state, such that state element v[i] is managed by
worker b i

zc, where z is the size of a partition of the vector. If s is the size of the vector,
we have z = s

nw
. By doing so, the master can schedule an element xi to the worker with

identifier bH (xi)
z c. In typical implementations [7], the master is connected to each worker

through a shared FIFO message queue. The FIFO property ensures that two elements
accessing the same state element will be processed in the order in which they have been
received by the application. The state will actually be shared between all the workers, but
since the master properly schedules the stream elements, each worker will always access
only a contiguous partition of the state.

A possible programming interface for this pattern is shown in the following code
snippet.

1 template <typename S, typename IN, typename OUT> class FullyPartitioned{

2 std::vector<S> _state;

3 public:

4 FullyPartitioned(uint (*hash)(const IN& element),

5 OUT (*compute)(S& state, const IN& element));

6 };

Even in this case, to instantiate the pattern it is necessary to specify the types of the input
(IN) and output (OUT) streams and of the element of the state (in this specific example we
consider one-dimensional state). A hash function must be specified, taking as input an
element of the input stream and producing the hash value for that element. The function
compute performs the computation on a stream element, producing an output value to
be sent to the output stream.

2.3. Successive Approximation State Access Pattern

Applications characterized by this pattern manage a global state which, for each element
of the stream, is subsequently approximated. The new state approximation is computed
as a predicate snew = S (xi,scurr) , where the function S is specified by the user and
could, in some cases, return the current state without performing any modification5. The

4In the most general case it is modeled as a multi-dimensional array.
5The definition of this pattern is more compact and slightly different than the definition in [9].
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function S must be monotonic and must converge towards a specific value. For exam-
ple, it could be monotonically decreasing, i.e. snew = S (xi,scurr)< scurr. Updates to the
global state may occur in any order but are executed under mutual exclusion. Different
implementations are possible. In this paper, we consider an implementation which is dif-
ferent from that presented in [9]. In this implementation, we use a master-worker pattern,
where the state is globally shared and where each worker executes the function S on its
stream element and on the global state. In case of monotonically decreasing S , if the
function evaluation returned a value snew such that snew > scurr, the state is not updated.
scurr is a global variable shared by all the workers and accessed in mutual exclusion.

A possible programming interface for this pattern could be:

1 template <typename S, typename IN, typename OUT>

2 class SuccessiveApproximation{

3 S _sCurr;

4 public:

5 SuccessiveApproximation(OUT (*compute)(S& state, const IN& element));

6 };

The sCurr variable contains the current state approximation, which can be modified
by the compute function, and which will return the element to be sent to the output
stream. The pattern will ensure that the state will be rolled back to the previous state if
the function compute did not improve the approximation.

3. State Aware Concurrency Throttling

In this Section we describe some possible techniques to be adopted for concurrency
throttling on applications using the described state access patterns. In all cases, it is
implicit that each part of the parallel application knows the number of currently active
threads.

3.1. All-or-none pattern

To increase the number of threads, it is sufficient to communicate this decision to the
master. It will start a new thread and will begin scheduling the new elements to it. This
can be done at any time during the execution, without any additional programmer in-
tervention. To remove a worker, the master will send it a special stream element (e.g. a
NULL pointer) and will not send any other element to that worker. Since the elements
are processed in FIFO order, when the worker receives this special message we are sure
it has already processed the previous elements which were scheduled to it, so it can stop
itself, thus releasing a core.

This reconfiguration strategy preserves the correctness of the application since the
updates to the internal state still occur in the correct order. Indeed, when a new worker
is added, it will start updating the shared variable counting the elements received by the
application but still to be processed. Similarly, when a worker is removed, the master will
only update the state when the counter is zero, and this can only happen after the worker
to be removed terminates the processing on its incoming elements. It is worth noting that
it is possible to apply this reconfiguration strategy only because of the knowledge about
how the internal state is accessed by the different parts of the application and could not
be applied in an arbitrary application.



September 2016

3.2. Fully Partitioned Pattern

When dynamically changing the number of workers, we must ensure that the state is
repartitioned among the new number of workers. To do so, it is sufficient to change the
variable nw, thus reflecting the new scheduling6. However, before changing this variable,
we must ensure that all the elements which were already scheduled have been processed.
Consider the simple case where we have a state vector composed by 4 elements and
two active workers. In this situation, the first worker will access the first 2 elements of
the vector while the second worker will access the remaining two elements. Assume
also that the master has already enqueued an element with H(xi) = 3 on the message
queue of the second worker. However, it still has not extracted the message from the
queue. In the meantime, a request to add two workers arrives and a new element with
H(xi+1)= 3 is received by the master. This element would be now scheduled to the fourth
worker, which will execute the computation on it. In the meantime, the second worker
extracts element xi from the queue and executes the computation on it. As is evident, this
violates the requirement of ordered execution. To avoid this, it is sufficient to enforce
that the previous elements present in the application are processed before changing the
number of workers. This would introduce a performance penalty since all the elements
already present in the message queues must be processed before starting scheduling new
elements. We will show experimental results relating to this issue in Section 4.

3.3. Successive Approximation State Access Pattern

To add or remove a worker, no additional operations need to be carried out. Indeed scur
is globally shared among all the threads.

4. Experiments

In this Section, we present experimental results for the performance of some of the state-
aware concurrency throttling strategies.

4.1. Fully Partitioned Pattern

As anticipated in Section 3, when an application characterized by a fully partitioned state
needs to be reconfigured, we first need to process all the elements already enqueued to
the different workers. This introduces a penalty, which we verified to be proportional
to the queue size, by evaluating it on a real network monitoring application [7]. Results
are not shown here due to space constraints. Having small queues would be beneficial
for reconfiguration latency. However, larger queues can better accommodate workload
fluctuations. Finding the optimal message queue size is a complex problem and outside
the scope of this work. In Figure 3 we give some results presented in [11], showing that
by using a state-aware concurrency throttling we are able to have a power consump-
tion which is proportional to the application performance. In that case the application
was characterized by a fully partitioned state access pattern, albeit it was implemented

6On distributed memory systems, we also need to move parts of the state between workers. Some solutions
to this problem exist [10].
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from scratch. Having a proper abstraction would significantly reduce the time required
to develop such an adaptive application.

Figure 3. Benefit of using a state-aware concurrency throttling.

4.2. Successive Approximation State Access Pattern

For this experiment, we take as example the canneal application, which minimizes the
routing cost of a chip design. Specifically, we consider the implementation described in
[5]. This is not a streaming application but, since it is an iterative application, the pre-
sented state access patterns can still be applied. In this implementation, each iteration
must be performed by all the workers. Since there is no stream, the master will simply
ask the workers to perform a specific iteration, until there are no more iterations to per-
form. The master decides that there are no more iterations to perform if a convergence
condition is satisfied or if a specified number of iterations have been performed. The
function S performed by the workers is also parametric in their number. This is not
a problem since, as described in Section 3, we assume that all the parts of the parallel
application always know how many threads are currently active. After each iteration, a
barrier is performed and then the convergence conditions are checked by the master.
The barrier is implemented by the master, which waits for an acknowledgment mes-
sage from all the workers. When the number of threads is changed, this is reflected on
the condition checked by the master, which will always wait for the correct number of
acknowledgments.

We now show an example where an external manager controls the application
to enforce a maximum power consumption. To perform this experiment we used
NORNIR [11], a power-aware runtime support for parallel applications. Power consump-
tion has been measured by using MAMMUT [12].
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In this specific experiment, we set a maximum power consumption of 41 Watts.
As we can see from Figure 4, the runtime support at the beginning of execution acti-
vates a different number of workers, to select the optimal one. After this first exploration
phase, the application stabilizes its power consumption at 41 Watts, by using 20 workers.
Around 6 seconds from the start, this requirement is violated7 and the runtime support
does another small exploration and, eventually, activates 19 workers.

5. Related Work

With the emerging Internet of Everything paradigm, streaming computations have gained
momentum. Data streams are often characterized by fluctuation on the input arrival rate
with the presence of data bursts and cyclic phases [15].

In the context of long running streaming applications, managing such variability is
paramount to provide a given Quality of Service (QoS) level using the smallest possible
number of resources to reduce energy consumption and improve efficiency.

If parallel patterns such as pipeline and task-farm [20] are used to model the most
critical parts of the streaming application, they have to provide auto-tuning capabilities
or at least make available suitable interfaces to the programmer for managing these dy-
namic changes. Such dynamic behaviors, when targeting multicore systems, are often
handled using approaches based on the dynamic adaptation of the parallel run-time sys-
tem [10,8,7]. The most widely used techniques for optimizing power/performance on
multicore platforms are Dynamic Concurrency Throttling [17], Concurrency Packing [2].
In [6] such techniques have been compared considering the PARSEC benchmark suite
revealing that concurrency throttling is usually more efficient in the utilization of the
resources, though it requires more programming effort.

In fact, changing the number of resources dynamically usually needs complex state
re-organization protocols to move the application state without altering the computation
semantics. Some research works, such as [14,13] focus on the state transfer in elastic
stateful data streaming applications. However, the main problem of these techniques is
that they are often difficult to implement if not directly provided by the runtime system.

Our approach leverages on parallel patterns modelling stateful streaming compu-
tation [9]. In this context, the runtime system is aware of the type of the internal state
and is able to automatically re-organize the state when the resources change is triggered.
Despite the extensive literature describing different techniques for dealing with dynamic
resource change, to the best of our knowledge, no previous attempt was made to study
state access patterns and concurrency throttling for stateful streaming applications with
the objective to reduce the programming effort required by the programmer.

6. Conclusions and Future Work

In this work, we presented techniques to manage state rearrangement when concurrency
throttling is applied on stateful streaming applications. We provided suitable program-
mer abstractions and presented some results highlighting the importance of concurrency

7This is not visible in the figure since the requirement is exceeded by less than 1 Watt.
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throttling. As future work, we would like to study state-aware concurrency throttling for
other state access patterns and to extend this work to a wider set of applications.
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