
Evaluating Concurrency Throttling and Thread
Packing on SMT Multicores

Marco Danelutto, Tiziano De Matteis, Daniele De Sensi and Massimo Torquati
Department of Computer Science, University of Pisa

Largo B. Pontecorvo 3, I-56127, Pisa, Italy
Email: {marcod, dematteis, desensi, torquati}@di.unipi.it

Abstract—Power-aware computing is gaining an increasing
attention both in academic and industrial settings. The problem
of guaranteeing a given QoS requirement (either in terms of
performance or power consumption) can be faced by selecting
and dynamically adapting the amount of physical and logical
resources used by the application. In this study, we considered
standard multicore platforms by taking as a reference approaches
for power-aware computing two well-known dynamic reconfigu-
ration techniques: CONCURRENCY THROTTLING and THREAD
PACKING. Furthermore, we also studied the impact of using
simultaneous multithreading (e.g., Intel’s HyperThreading) in
both techniques. In this work, leveraging on the applications
of the PARSEC benchmark suite, we evaluate these techniques
by considering performance-power trade-offs, resource efficiency,
predictability and required programming effort. The results show
that, according to the comparison criteria, these techniques
complement each other.
Keywords: concurrency throttling, thread packing, power-
aware, green computing, PARSEC benchmarks.

I. INTRODUCTION

In recent years power consumption management has become
a major concern for data centers due to economic cost,
reliability problems and environmental reasons [1]. Power-
awareness is the ability of a system to be aware of its power
consumption and to change its operating behaviour in order to
meet a given requirement on this important metric.

A typical approach to reduce the power consumptions
of applications consists in slowing them down, while still
guaranteeing a performance level imposed by the user [2], [3].
In other cases, explicit power consumption requirements may
be specified in order to do not exceed the available thermal
or power budget (the so called power capping) [4], [5], [6].
Similar requisites are also supported by hardware vendors,
which provide mechanisms and tools to specify power capping
values (e.g. Intel RAPL [7]).

Different factors play a crucial role in achieving the desired
goals in terms of performance and/or power budget. For
example, it is particularly important to choose the proper
number of threads/processes that compose the parallel ap-
plication, how they are mapped on the available resources
and the operational configuration of the machine used (e.g.,
frequency and voltage). Due to different application workloads
and architecture features, the intercourse among these factors
is often unclear and the problem of selecting their appropriate
combination is a challenging task.

In this work we try to entangle this complexity by focusing
on Concurrency Throttling (CT in the following), i.e. change
the number of threads of the parallel application, and Thread
Packing (TP), i.e. select the right mapping of threads over
the available cores. The study has been conducted considering
the PARSEC 3.0 [8] benchmark suite comprising a number
of multi-threaded applications covering a wide range of work-
load characteristics. Applications are executed on multicore
CPUs, which represents a common scenario in modern high-
performance clusters, data centers and commodity devices. In
addition to this, for both techniques, we will analyse the impact
of Simultaneous Multithreading (SMT in the following), an
hardware facility that is widely diffused in modern proces-
sors and allows multiple independent threads to be executed
simultaneously on the same physical core, to better utilise the
available resources. In this case, the physical core is composed
by a fixed number of contexts, one for each thread. The evalua-
tion will take into account several aspects: performance/power
trade-offs, efficiency and required programming effort.

To the best of our knowledge, this is the first systematic
and comprehensive comparison of these techniques in terms
of optimality and coverage of the desired performance/power
requirements. In addition to this, as a main contribution of
this work, we provide to the application programmers the
insights on how these two techniques can help in achieving
the desired levels of performance and power consumption,
and what to expect when using them in real application
scenarios. The results obtained, clearly show that there is no
clear winner between CT and TP techniques, none of them
is always better than the other, instead, they complement each
other for different aspects. However, if we mostly take into
account the programming effort and the application overhead
introduced by the technique, the TP-based mechanisms are
the best choice. This is also an important message for run-
time developers that want to provide efficient abstractions for
dynamic reconfiguration of parallel applications for multicore
platforms.

The rest of this paper is structured as follows. In Section
II we describe some related works that use CT and TP
mechanisms. Then, starting from a motivating example, we
clarify the main objectives of this work (Section III). In
Section IV we present the results of our evaluation. Eventually,
in Section V we draw the conclusions and we discuss some
possible future directions.



II. RELATED WORK

In the past few years, power efficient computing has drawn
the attention of research and industrial communities. Consid-
ering a parallel program in execution over a multicore CPU,
the programmer or the run-time system may act on various
”knobs” for controlling performance and power consumption,
as for example: the level of concurrency, threads-to-cores
affinity, and the operating status of the CPU (i.e. frequencies
and voltages). Turning these knobs properly allows to obtain
different results in terms of performance and power consump-
tions. Among the different mechanisms and techniques that
can be exploited in this regard, Concurrency Throttling (CT),
Thread Packing (TP) represent the most studied ones.

Most of the works proposed in the literature consider only
one of these mechanisms at a time. Authors in [9], [10]
used CT to decide the best amount of threads to be used
in running the parallel application in order to achieve the
maximum performance. Indeed, due to contention on shared
resources, such as caches and floating points units, using all
the available cores does not always correspond to the most
effective choice. Another common approach is to use CT to
provide specific guarantees on performance [2], [11]. In this
cases, the application programmer (or user) sets a minimum
performance requirement for its parallel application, either
in terms of maximum execution time or minimum rate of
elements to be processed per time unit. Then, the runtime
system will select the best amount of threads and cores to
use during the application run to satisfy such requirement. A
number of of recent works combine CT with other techniques
(e.g. Dynamic Voltage and Frequency Scaling, DVFS) to
guarantee a given level of performance while minimising, at
the same time, energy or power consumption [12], [13], [14].

Conversely, TP has been mainly used in [15], [4] to provide
explicit guarantee on the maximum power consumption and
in [16], [17] to minimise the energy consumption.

Differently than the previous cited works, [18] uses both
CT and TP mechanisms. In this scenario, Hardware Simulta-
neous Multithreading (SMT) represents a feature of modern
multicore CPUs that has not been completely explored in
the context of power aware computing. Few works such
as [19], [10] studied this facility, considering the different
contexts present in each core of the CPU while using the CT
mechanism.

Despite the wide literature describing and using CT and
TP techniques, to the best of our knowledge, is still missing a
thorough study on how these techniques can be exploited and
combined when considering also SMT. We believe that such
comparison would allow researchers and developers of parallel
application to better understand the impact of each technique
on both performances as well as power consumption.

III. MOTIVATING EXAMPLE

In this section we consider a simple motivating exam-
ple used to support the discussion and to justify the main
objectives of this study. We consider four different cases:
Concurrency Throttling with and without SMT (CT-HT and

CT, respectively), Thread Packing with and without SMT (TP-
HT and TP, respectively).
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Fig. 1: Comparison of power-performance trade-offs for the
Dedup application. For the sake of readability, we considered
only configurations with even numbers of cores/threads.

Figure 1 shows the results obtained running the DEDUP
application (one of the benchmark of the PARSEC suite) on a
24 cores 2-way Hyper-threaded machine (HyperThreading is
the Intel’s implementation of SMT). Each point in the figure
represents a specific configuration that uses a given number
of resources (threads and cores) for each of the four cases
considered. On the x-axis we have the execution time (in
seconds) of the application, and on the y-axis its average
power consumption over the program execution (in watts).
In the figure, we have also reported the Pareto frontier (the
continuous line), i.e. the set of configurations such that does
not exist any configuration having both lower execution time
as well as lower power consumption. The rationale is that,
when reconfiguring an application, only the points on the
Pareto frontier should be considered. On the other hand, the
points on the Pareto frontier belong to different reconfiguration
techniques, therefore there is no mechanism (among those
considered) which is always better than the others for all
possible configurations. If we consider the CT case, we can
see that there is no configuration that is able to consume less
than 58 Watts, conversely if we consider the TP-HT there is
no configuration that is able to finish its execution in less than
13 seconds. Furthermore, increasing the number of resources
(thread and/or cores) above a given threshold does not provide
any benefit on the execution time, instead, it does increase the
power consumed. In general, if we had considered only some
particular techniques (e.g., TP and TP-HT), we would have
always selected non-optimal configurations.

Despite DEDUP represents a notable case, other PAR-
SEC benchmarks exhibit different behaviours. To mention, in
FACESIM almost all the possible configurations lie on the
Pareto frontier. In such cases, the reconfiguration mechanisms
complement each other and the best choice depends on the
specific constraints set by the user. Finally, there are cases



where all the points on the Pareto frontier belong to a sin-
gle reconfiguration technique. We will analyse each PARSEC
benchmark in detail in Sect. IV.

IV. EVALUATION

The evaluation of the different mechanisms is performed
on the set of applications provided by the PARSEC benchmark
suite [8]. PARSEC parallel benchmarks differ one each other in
terms of: application domain, programming model (pipeline,
data-parallel and unstructured), granularity, working set size,
data sharing and data exchange patterns. This heterogeneity
allowed us to study the reconfiguration techniques on a wide
range of real world applications. Among the different input
sizes provided by PARSEC, we choose the native one, in order
to have a real world behaviour of the applications. We studied
all PARSEC applications except X264, which we were not
able to run on our system. For all the benchmarks we tested
the reference Pthreads version, except for FREQMINE that is
shipped with only the OpenMP version.

For each PARSEC benchmark, the number of threads (also
referred as concurrency degree in the following) to activate
has been selected by using the -n parameter provided by
the parsecmgmt tool. All experiments were conducted on
an Intel workstation with 2 Xeon E5-2695 v2 @2.40GHz
CPUs, each with 12 2-way HyperThreaded cores, running a
Linux based operating system. The frequency has been set
to the maximum for all the experiments. To measure the
power consumption, we used the open source C++ MAMMUT
library1. Threads-to-cores affinity has been enforced by using
the TASKSET Linux utility. In all the presented results, we only
considered the power consumption and the time spent in the
so-called region of interest (ROI), i.e. the parallel sections of
the applications, without considering initialisation and cleanup
phases, to avoid distortions of the measurements.

The different techniques are compared considering a differ-
ent concurrency degree, a different number of cores as well
as the number of SMT contexts. Each of these configurations
is uniquely identified by:

1) the technique used, i.e. CT, CT-HT, TP or TP-HT;
2) n, the concurrency degree with which the PARSEC

application is executed;
3) m, the number of computational resources used.
Concerning the point 3), the type of computational resources

used changes according to the technique selected (i.e., point
1) above): for CT and TP we will consider distinct cores, i.e.
we will not use the HyperThreading facility available in the
target platform. On the contrary, for CT-HT and TP-HT we
will take into account also the core contexts.

When testing the CT-based techniques, we change the level
of concurrency degree n and the number of used resources
accordingly (i.e., m = n). For the case in which the Hyper-
Threading capability is not used, we launch the application
with at most 24 threads, that is 1 ≤ n,m ≤ 24; for CT-HT
we execute it with maximum 48 threads exploiting also all the

1http://danieledesensi.github.io/mammut/

available contexts (1 ≤ n,m ≤ 48). For TP-based techniques
we fix the concurrency degree to the maximum number of
available resources (i.e. n = 24 and n = 48 for TP and TP-
HT, respectively) while we change the number m according
to the resources effectively used (i.e. 1 ≤ m ≤ 24 for TP and
1 ≤ m ≤ 48 for TP-HT).

For each of the PARSEC benchmark, we executed all the
available configurations multiple times. In the following, we
will consider the averaged values of the execution time and
power consumption. As shown in Fig. 1, for each benchmark
we obtain in this way different set of points, each one referring
to the different techniques.

In the rest of this section we evaluate Concurrency Throt-
tling and Thread Packing in terms of power-performance trade-
offs, their efficiency as well as the programming effort required
to use them.

A. Power-Performance Tradeoff

In this section, we evaluate how CT and TP techniques
can be used for selecting the best configuration. The user
imposes a requirement on one of the two metrics, either
performance by expressing the maximum execution time or
power consumption by setting the maximum number of watts
to consume. Among all the configuration that satisfy the
given constraint, the optimal one is the solution that is able
to minimise the other metric. That is, the lowest power
consuming configuration which guarantees a given execution
time or the most performing configuration that does not exceed
a specific power budget. The optimal configurations are the
ones that fall on the Pareto frontier (see Fig. 1). To clarify
this aspect, consider the case in Fig. 1. Suppose that we want
an execution time of maximum 25 seconds. To analyse the
quality of the TP mechanism we compare the power consumed
by the configuration on the Pareto frontier that is able to
satisfy the requirement (58 Watts) with the power consumed
by considering only TP mechanism (62 Watts). Then, we state
that the TP mechanism has a relative loss of 6.89% with
respect to the optimal solution.

To avoid biases due to specific constraint choices, we
compare the different mechanisms on multiple constraints,
similar to what is done in other works [3]. For example, if
an application has a minimum execution time of 20 seconds
and a maximum of 220, then we will use as constraints
20s, 22s, 24s, . . . , 220s. Basically, we slice the range of ex-
ecution times in 100 intervals of the same length. By doing
so, we are able to test a wide range of scenarios and to cover
the entire performance spectrum. The same approach has also
been adopted in the evaluation of the power constraint.

In Table I we report the percentage of constraints which
cannot be satisfied by each of the analysed techniques. For
performance constraints, TP-based solutions are usually less
performing, thus they cannot satisfy requirements close to the
performance peak of the application. On the other hand, they
are able to better exploit the available resources and to reach
low power consumption configurations which are not present
in the CT-based mechanisms.
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Fig. 2: Comparison of the loss of each mechanism with respect to the best one.

TABLE I: Percentage of constraint which cannot be satisfied
by each mechanism (averaged over all the benchmarks).

SCENARIO CT TP CT-HT TP-HT
PERFORMANCE
CONSTRAINT

0.45 0.95 0.72 1.54

POWER
CONSTRAINT

10.86 6.63 9.36 0.0

In Figure 2 we report the loss percentage of each mechanism
with respect to the optimal solution. For a given application,
each bar represents the average value computed over all the
possible requirements. TP-HT exhibits the lowest loss in
almost all the benchmarks both for power consumption and
performance constrained scenarios.

B. Efficiency

Another interesting evaluation concerns the average number
of core contexts used by each reconfiguration techniques.
A common assumption when execution a parallel program
on a multicore platform is that the assigned cores may be
exclusively used by the application for the entire execution.
In such scenario, using as few cores as possible is a very
desirable property.

In Table II, it is shown, for the performance and the power
consumption requirements, the average number of additional
core contexts used by each technique to minimise the other
requirement. For each PARSEC applications, we considered
only the set of requirements that can be reached by using
the given mechanism. Then, we compare the number of
used core contexts against the ones employed by the optimal
configuration.

TABLE II: Efficiency comparison: number of additional core
contexts used with respect to the optimal solution.

SCENARIO CT TP CT-HT TP-HT
PERFORMANCE
CONSTRAINT

(AVG)
0.25 0.89 2.34 4.39

POWER
CONSTRAINT

(AVG)
0.65 1.39 15.05 20.07

As it can be noticed, due to less contention, the techniques
that do not use HyperThreading are able to consume less
resources. In particular, CT-based techniques are able to
reduce the number of core contexts used with respect to TP-
based mechanisms.

C. Programming effort

An important aspect that we would like to analyse con-
cerns the implications of the chosen mechanism in terms of
programming effort required to implement and use it.

Thread Packing is usually implemented by changing
threads-to-core affinity (e.g., by using the taskset Linux
utility) to let threads run on specific cores or contexts of
the CPU. The application structure is not changed, thus
this approach does not require any additional effort to the
application developer.

On the other hand, Concurrency Throttling may require
more effort since the application must be able to change,
while it is running, the number of threads it uses. In pure
functional computations (e.g. task-farms parallel pattern), the
effort required to change the number of threads is limited.
However, in the most general case where the application has



a state shared or partitioned among its threads, if the number
of threads is changed at runtime, there may be the necessity
to reorganise or redistribute the state among them in order to
preserve the correctness of the computation. Since this depends
on the specific structure and characteristics of the application,
it must be done manually by the application programmer. This
process is time-consuming, error-prone and in some cases it
may even be unfeasible.

D. Summary

In Table III, we provide a qualitative summary of the
analysis done throughout this paper. For each evaluation we
assigned a score between one and three (the higher the better).

TABLE III: Summary of the performed evaluation.

ANALYSIS CT TP CT-HT TP-HT
POWER-PERFORMANCE

TRADEOFF
?? ?? ?? ? ? ?

EFFICIENCY ? ? ? ?? ? ?
PROGRAMMING EFFORT ? ? ? ? ? ? ? ?

As it can be noticed there is not a clear winner and the
compared techniques complement each other. Thread Packing
allows to reach a slightly better power-performance trade-off
with respect to Concurrency Throttling and requires a limited
programming effort to be implemented. On the contrary,
Concurrency Throttling exhibits the best efficiency in terms
of resources used. By using HyperThreading, it is possible to
achieve better power-performance trade-offs while increasing
the amount of used resources.

V. CONCLUSIONS AND FUTURE WORK

This work evaluates the Concurrency Throttling and the
Thread Packing techniques considering SMT multicore plat-
forms. The evaluation has been performed on PARSEC bench-
marks, showing that Thread Packing-based mechanisms have
a lower impact on the programming effort and are charac-
terised by better power-performance tradeoffs, despite using
in general more resources thatn Concurrency Throttling-based
solutions.

As a future work, we will study others low-level mecha-
nisms used for controlling power and performance such as
the Dynamic Voltage Frequency Scaling (DVFS). Moreover,
additional platforms such as the Intel Knights Landing (4-way
SMT cores) and the IBM Power server (8-way SMT cores)
will be used to validate the results presented in this work.
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