
Nornir: A Customizable Framework
for Autonomic and Power-Aware Applications

D. De Sensi �, T. De Matteis, and M. Danelutto

Department of Computer Science, University of Pisa, Pisa, Italy,
{desensi, dematteis, marcod}@di.unipi.it

Abstract. A desirable characteristic of modern parallel applications is
the ability to dynamically select the amount of resources to be used
to meet requirements on performance or power consumption. In many
cases, providing explicit guarantees on performance is of paramount im-
portance. In streaming applications, this is related with the concept of
elasticity, i.e. being able to allocate the proper amount of resources to
match the current demand as closely as possible. Similarly, in other sce-
narios, it may be useful to limit the maximum power consumption of an
application to do not exceed the power budget. In this paper we propose
Nornir, a customizable C++ framework for autonomic and power-aware
parallel applications on shared memory multicore machines. Nornir can
be used by autonomic strategy designers to implement new algorithms
and by application users to enforce requirements on applications.

Keywords: autonomic, power-aware, quality of service, framework

1 Introduction

Nowadays, sensors, social network interactions and heterogeneous devices in-
terconnected in the Internet of Things are continuously producing unbounded
streams of data. In Data Stream Processing applications, this flow of information
must be gathered and analyzed “on the fly” in order to produce timely responses.
Systems for high-frequency trading, health-care, network security and disaster
managements are typical examples: a massive flow of data must be processed in
real-time to detect anomalies and take immediate actions.

Usually, the development of stream processing applications requires to exploit
parallel and distributed hardware in order to meet Quality of Service (QoS) re-
quirements of high throughput (i.e. applications must be able to cope with high
volume of incoming data) and low latency (i.e. results must be computed in a
short period of time). Due to their long-running nature (24hr/7 days), stream
processing applications are naturally affected by “ebbs and flows” in the input
rate and workload characteristics. These variations need to be sustained to pro-
vide the QoS required by the users without interruptions. However, run as fast
as possible is not a viable solution in a world in which power consumption man-
agement has become a major concern for data centers due to economic cost,

reliability problems and environmental reasons. In other cases, explicitly appli-
cation’s power consumption may be useful to do not exceed the available power
budget. Not being able to enforce such requirement may lead to hardware fail-
ures and to a system outage. Autonomicity (sometimes referred as adaptivity or
elasticity) is a fundamental feature: applications must be able to autonomously
adjust their resources usage (i.e. their configuration) to accommodate dynamic
requirements and workload variations by maintaining the desired QoS in terms
of performance and/or power consumption.

Existing Stream Processing Systems (SPSs) fall short in handling this prob-
lem. Delegating the decisions to the user (like in [1]) or to applications (as in
[19]) are not wise decisions since they will require a human intervention or a
deep knowledge of the parallel computation to the application programmer. On
the other hand, in the literature there are plenty of proposals of autonomic algo-
rithms (e.g. [11], [6], [17], [10], [18]). Implementing such strategies is a cumber-
some and error-prone duty for the application programmer, that has to deal with
many architectural low-level issues related to hardware mechanisms management
like voltage, frequency, cores topology, etc. Even interfacing with applications in
order to collect monitoring data may not be an easy task. Indeed, in many cases
the proposed strategies are only simulated or, even when actually implemented,
they are embedded inside the application code and it is very difficult to port
them on different applications. For these reasons, we believe that providing a
customizable framework would allow the autonomic strategies designers to just
focus on the algorithm, exploiting the infrastructure provided by the framework
to collect the data and to apply the decisions. This is a fundamental step for
building efficient autonomic techniques and for their wide adoption.

In this paper, we propose Nornir, a customizable C++ framework for au-
tonomic and power-aware parallel applications on shared memory multicore ma-
chines1. Our focus is on applications composed by a single, parallel functionality
(an operator). The support for applications that can be expressed as the compo-
sition of different operators will be included in future releases of the framework.
Nornir can be used by different actors:

– Autonomic strategy designers can customize every aspect of Nornir: the
monitoring, the management of hardware mechanisms and the planning poli-
cies. The designer can just focus on the implementation of his new autonomic
strategy by using the provided set of resource management mechanisms and
the application monitoring infrastructure. Designers can develop strategies
to explicitly control power consumption, performance or both of them.

– Application programmers can use it to interface an already existing applica-
tion to Nornir. Nornir also provides a programming interface for parallel
applications, to be used if the application needs to be written from scratch.

– Application users specify requirements on performance and/or power con-
sumption of their applications. Nornir will be in charge of monitoring the

1 The framework is released under open source license and publicly available at http:
//danieledesensi.github.io/nornir/

application execution and selecting its appropriate configuration (e.g. num-
ber of cores, clock frequency, etc...) to enforce the imposed requirements.

Currently, different state of the art autonomic techniques have been already
implemented in Nornir, allowing the algorithm designer to compare his new
algorithm with other existing ones.

The paper is organised as follows. In Section 2 we outline the related work. In
Section 3 we describe how the user can express requirements on his application
by using Nornir. In Section 4 we show how the programmer can interface a
new or an existing application to Nornir and section 5 describes how Nornir
can be customised by autonomic strategies designers. Some experimental results
will be shown in Section 6 and conclusions are eventually drawn in Section 7.

2 Background and Related Work

An autonomic or autonomic system is able to alter his behavior according to QoS
requirements and to the surrounding conditions in order to achieve some goal,
without any human intervention. Altering the behavior usually implies changing
the configuration of the application, e.g. the amount of used resources.

Existing algorithms are usually time-driven and, at each time step, act by
following a generic Monitor-Analyze-Plan-Execute (MAPE) loop [14]. In the
Monitor phase, various measurements are collected from the application (e.g.
performance and power consumption). In the Analyze phase monitored data,
collected at the current and previous time steps, is compared against the user’s
requirements. If requirements are violated, the Plan phase a new optimal re-
sources allocation will be computed. This planned decision is communicated to
the Execute phase, that applies the new resources allocation to the application.

Different autonomic strategies have been proposed, to satisfy user’s require-
ments in terms of performance ([17], [11], [18], [16]), power consumption ([10]) or
both of them ([6], [9]). Such requirements are usually enforced even in presence
of workload fluctuations or external interferences. However, in many cases, these
techniques are only simulated or implemented for specific applications.

In literature, some proposed framework target a problem similar to the one we
are addressing in this work [20], [12], [15]. However, they provide very limited cus-
tomization opportunities, are quite outdated and the source code is not publicly
available. Moreover, they do not provide any explicit support for streaming ap-
plications. The work most similar to ours is SEEC [13]. In this work, the authors
describe the design of a framework for self-aware computing. Such framework is
customizable, allowing the autonomic strategy designer to specify custom moni-
toring and execution mechanisms. Nevertheless, there are some limitations with
respect to our work. First of all, there isn’t an explicit concept of stream. As
shown in [9] this can lead to unnecessary reconfigurations, since it would not be
possible to know whether workload fluctuations are caused by intrinsic changes
in the application or by changes in the arrival rate of data to the application.
In addition to this SEEC allows the customisation of the Monitor and Execute

parts but provides its own Plan algorithm. Albeit being a flexible strategy, it is
not possible to replace it with a different one. On the other hand, in Nornir
this aspect is customizable as well. This is an important feature since allows the
strategy designer to quickly prototype and validate his own planning strategies
and to easily compare it with other existing ones. Lastly, the implementation of
the SEEC framework is not publicly available.

3 User

The user needs to detail which kind of constraints should be enforced by Nornir
on his application by specifying them through an XML file. Requirements can be
expressed on the metrics reported in Table 1.

Metric S Description

Bandwidth B Number of stream elements processed per second (number of
iterations executed per second for non streaming, iterative, ap-
plications).

Latency L Time required to process a single stream element.

Completion Time T Time required to process all the elements on the stream�∞ .

Utilisation
Factor

ρ Percentage of time spent doing useful work (i.e. processing
stream elements). 100− ρ is the percentage of time wasted by
the application waiting for new data to arrive from the stream.

Power
Consumption

P Since current operating systems don’t provide mechanisms to
monitor the individual power consumption of each application,
this may correspond to the system level power consumption.

Energy E Power integrated over time�∞ .

Table 1: Parameters that can be controlled by the user. ��∞ = Meaningful only if the
stream has finite size. The user needs to specify the expected stream length.

Despite the target of this work is towards Data Stream Processing applica-
tions, Nornir can manage generic iterative applications, for example by enforc-
ing requirements on the latency of one iteration or on power consumption. It
is possible to express constraints on more than one metric at the same time,
for example by asking Nornir to find the configuration characterized by the
lowest power consumption among those with a bandwidth higher than a cer-
tain threshold. Similarly, the user can ask Nornir to find the most performing
configuration among those characterized by a power consumption lower than a
specified bound.

The XML file can also be used to specify other parameters, like the autonomic
strategy to be used, on which executors Nornir should operate, the duration of
the MAPE step (i.e. the control step), etc... The following code snippet shows
a configuration file example, used to ask Nornir to find the best performing
configuration characterised by a power consumption lower than 50 Watts and
using a control step of 500 milliseconds:

<?xml version="1.0" encoding="UTF-8"?>
<nornirParameters>

<requiredBandwidth>MAX</requiredBandwidth>
<powerBudget>50</powerBudget>
<samplingIntervalSteady>500</samplingIntervalSteady>

</nornirParameters>

4 Application Programmer

A controlled parallel application is coupled with a Manager, which is in charge
of executing the MAPE control loop. The Manager runs in a separate thread/process
and interacts with the application to gather monitoring data and to apply recon-
figuration decisions (e.g. changing the number of threads) to enforce the user’s
requirements.

Nornir offers different possibilities to the application programmers for realiz-
ing this interaction, allowing to chose the desired tradeoff between configuration
optimality and required programming effort. In the following, we will discuss
these different opportunities.

Application written from scratch The programmer can write a parallel ap-
plication by using the parallel programming interface provided by Nornir. This
interface allows the programmer to write both structured (i.e. parallel patterns
based) and unstructured applications expressed as a graph of concurrent activi-
ties. By doing so, Nornir can access many internal features of the runtime, thus
extending its monitoring capabilities and being able to operate on additional ex-
ecutors. Details about this API can be found in [5].

Application written using a supported framework Nornir can easily
interface with existing applications written in one of the supported parallel pro-
gramming environments. At the time being, the only supported framework is
FastFlow2. FastFlow is a pattern based parallel programming framework,
particularly suited for parallel streaming applications. In this case is sufficient
for the programmer to provide to the Manager a handler to the application,
as shown in the following code snippet:

Parameters p("parameters.xml"); // Load Nornir parameters.
ManagerFarm<> m(&farm, p); // farm = FastFlow Application.
m.start(); // Start application.
m.join(); // Wait for application end.

Instrumented application If the application is implemented with a non-
supported framework, the programmer can interface it to a Nornir Manager
running in a separate process as a server. The application will act like a client, by
inserting few instrumentation calls in his application, as shown in the following
snippet:

2 http://calvados.di.unipi.it/

StreamElement* s;
while(s = receive()){

process(s);
}

1 Monitor r("parameters.xml");
2 StreamElement* s;
3 while(s = receive()){
4 r.begin();
5 process(s);
6 r.end();
7 }
8 r.terminate();

On the left, we have the original, already existing, streaming applications and
on the right the same application after it has been instrumented. In line 1 the
application opens a connection towards the manager and sends to it the param-
eters (e.g. QoS requirements). Then, for each stream element, after receiving it
from the stream (line 3), the processing is wrapped between 2 calls (lines 4 and
6). By doing so, the performance of the application will be monitored and the
data will automatically flow towards the Manager. Eventually, in line 8, the
connection with the Nornir Manager is closed. Note that this approach only
requires inserting 4 instrumentation calls in the already existing application.

Black-box application In some cases the programmer may not have the pos-
sibility to instrument and recompile his application. In such cases, the only way
Nornir has to monitor the application performances is to rely on performance
counters, for example by monitoring the number of assembler instructions exe-
cuted per time unit (i.e. instructions per second (IPS)). Accordingly, the user
should express his performance requirements for the application in terms of IPS.
Correlating the IPS to the actual application bandwidth is not an easy task and
not so intuitive from the user perspective. Moreover, as shown in [13] perfor-
mance counters may not be a good performance proxy. For these reasons, this
approach should only be used if none of the previous ones can be adopted. Sup-
pose that the user wants to specify some constraint on his streamprocessing

application. Then, he can run it by using the Nornir applications launcher:
manager-blackbox --parameters parameters.xml

--application ./streamprocessing

Note that this doesn’t require any intervention from the programmer.

To summarize, Nornir provides different solutions to interact with applica-
tions. The optimal solution would be to program the streaming application with
the provided programming API or to use a supported framework. By accessing
the runtime support, Nornir can also access other executors (Section 5.3) that
would not be available otherwise (e.g. changing the number of threads), thus
improving the quality of the selected configuration, as shown in [3]. If it is not
possible to rewrite the application by using a different framework, the program-
mer can just insert few instrumentation calls inside the application, allowing
Nornir to monitor it. Eventually, if even the instrumentation is not feasible
(e.g. because the programmer can’t or doesn’t want to change the application
code and/or recompile it), Nornir can still manage the application, not requir-
ing any programming effort. However, we can only monitor system performance
counters and we lose the concept of stream. Moreover, expressing performance
constraints in this scenario could be not intuitive from the user perspective.

5 Strategy Designer

In this section, we describe the design of the framework, focusing on how it can
be customized by the autonomic strategy designer. The general architecture of
Nornir is depicted in Figure 1.

Fig. 1: General Architecture of Nornir Framework.

In the upper layer, we have the different types of applications that can be
interfaced to Nornir (Section 4). Nornir interacts with the system knobs and
sensors (e.g. power consumption one), by using Mammut [7]3. Mammut is an
object-oriented C++ framework allowing a transparent and portable monitoring
of system sensors as well as management of several system knobs.

The following code snippet shows a simplified version of the main parts of
Nornir implementation4:

1 typedef enum{
2 KNOB_VIRTUAL_CORES = 0,
3 ...
4 KNOB_NUM
5 }KnobType;
6

7 class Manager{
8 ...
9 void run(){

10 while(isRunning()){
11 sleep(_parameters.samplingInterval);
12 ApplicationSample s = getSample(); // Monitor
13 storeSample(s);
14 KnobsValues k = _selector->getNextKnobsValues(); // Analyze & Plan
15 for(uint i = 0; i < KNOB_NUM; i++){
16 _knobs[i]->changeValue(k[i]); // Execute
17 }
18 }
19 }

3 http://danieledesensi.github.io/mammut/
4 Actual implementation consists of approximately 18000 lines of code

20 virtual ApplicationSample getSample() = 0;
21 };
22

23 class Knob{
24 ...
25 std::vector<double> _knobValues;
26 virtual void changeValue(double v) = 0;
27 };
28

29 class Selector{
30 ...
31 virtual KnobsValues getNextKnobsValues() = 0;
32 }

Source Code 1.1: Simplified version of the main parts of Nornir implementation.

The meaning of this code snippet will become more clear after the end of this
section. For the moment, we can focus on the MAPE (lines 10-18) loop. In the
remaining part of this section, we describe how each of the 3 steps is designed
and how they can be customized by the autonomic strategy designer.

5.1 Monitor

As we shown in Section 4, the user can get the highest benefits from using
Nornir, by using it on an application written with the Nornir parallel pro-
gramming interface or on an application written by using one of the supported
frameworks. At the moment, this only includes FastFlow. To interface Nornir
with other runtimes, the designer needs to define a new manager for the new
runtime support, by defining a subclass of the Manager class and implementing
the getSample function (Code 1.1, line 20). In this function the designer should
implement the retrieval of a new monitored sample from the runtime (i.e. the
metrics in Table 1 and additional custom values). This function will be called by
Nornir (line 12) and the sample will be stored (line 13) in order to be accessible
from the Plan phase (Section 5.3).

5.2 Execute

To implement a new executor, the designer must define a subclass of the Knob
class (Code 1.1, lines 23-27). In the constructor, the knobValues vector must be
populated with the set of values that the knob can assume. When the planning
phase terminates, the function changeValue will be called by the manager on
all the available knobs (lines 15-17), with the parameter v corresponding to the
value that that specific knob must assume according to the planning algorithm.
By implementing the function changeValue, the designer specifies the actual
code to be executed when a request to change the value of that knob is received
by the Manager. For example, if the designer wants to implement a knob to
set the DRAM frequency, in the changeValue function he will insert the code to
perform this action. The new Knob object must then be created and added to
the knobs array (used in line 16). Moreover, a new enumeration value must be
assigned to this knob (lines 1-5). Currently, the following knobs are implemented:

Number of Cores Turns off (or on) some cores. If possible (e.g. for FastFlow
applications), it will also change the number of threads used by the applica-
tion (without stopping or restarting it), to have one thread on each active
core. Otherwise, more threads will contest for the same core. Threads will
be allocated to cores through the Threads Mapping knob, while this knob
only enforces the specified number of cores to be active. If the number of
threads is changed, the application programmer must ensure the correctness
of the computation (i.e. if the application maintains an internal state, the
semantic of the computation must be preserved after a reconfiguration).

Hyperthreading Level Number of hardware threads contexts to use on each
physical core.

Threads Mapping Once the number of cores to use has been decided, this
knob can be used to apply a given placement. For example, to place them on
a set of cores sharing some resources (e.g. last level caches) for minimizing
power consumption, or to place them on a set of cores with the minimum
amount of shared resources, wasting more power but improving performance.

Clock Frequency Operates on the clock frequency (and voltage) of the cores,
allowing to trade a decreased performance for a lower power consumption.

5.3 Analyze and Plan

To define a custom planning policy, the designer must define a subclass of the
Selector class (Code 1.1, lines 23-27) and implement the getNextKnobsValues
function. In its own Selector the designer can access different information
provided by the superclass, like: parameters specified by the user through the XML
file, the current configuration of the application and statistics about the previous
monitored samples, to be used during the Analyze phase. This information is
kept consistent by Nornir and should be exploited by the algorithm designer
to decide the next configuration. Once the decision is made, the next values of
each knob are stored into a KnobsValues object, an array of values (one for
each knob) which can be accessed by using the enumeration values identifying
the type of the knob (lines 1-5). The returned object will then be used to set
the appropriate values on the available knobs (lines 9-11).

For example, the following code snippet show how to implement a simple
selector that, when the monitored latency is lower than 100 ms, will force the
application to run on the 25% of the available cores, setting them to work at
50% of their maximum clock frequency. When the latency is higher (or equal)
than 100 ms, it will run the application on the 80% of the available cores and
will set them to work at 100% of their maximum frequency.

1 class SelectorDummy: public Selector{
2 ...
3 KnobsValues getNextKnobsValues(){
4 KnobsValues k(KNOB_VALUE_RELATIVE);
5 if(_samples->average().latency < 100){
6 k[KNOB_VIRTUAL_CORES] = 25; k[KNOB_FREQUENCY] = 50;
7 }else{
8 k[KNOB_VIRTUAL_CORES] = 80; k[KNOB_FREQUENCY] = 100;
9 }

10 return k;
11 }
12 };

Nornir will then automatically translate the percentage values for number of
cores and frequencies in real values, according to the availability of resources on
the target architecture. Alternatively, it is possible to directly express absolute
values for the knobs. By replacing KNOB VALUE RELATIVE with KNOB VALUE REAL

in line 4, Nornir will interpret line 6 as “Run the application on 25 cores and
set their frequency to 100Hz”. samples contains the moving average (simple
or exponential) of the monitored data. The type of moving average as well as
the size of the moving window (or the exponential parameter) can be specified
through the XML file.

This is the most flexible choice from the designer perspective since he can
implement different strategies from scratch. However, it is also possible to cus-
tomize some of the strategies already provided by Nornir. The following state of
the art autonomic strategies are already implemented in Nornir: i) Two online
learning strategies to enforce requirement on bandwidth and power consumption
[9], [8]; ii) A planning strategy mixing offline and online prediction [18]; iii) An
heuristic strategy [16] to enforce bandwidth requirements; iv) Two heuristics for
utilisation factor optimisation [4], [5]. Being able to implement such a spectrum
of different techniques, ranging from heuristics to online machine learning proves
the generality and flexibility of our design.

6 Results

Nornir already provides several autonomic strategies for streaming applica-
tions. We will show the results obtained by using the algorithm described in
[9] on a network monitoring application [4]. This application analyses all the
packets traveling over a network, applying Deep Packet Inspection techniques to
identify possible security threats. For our experiment we used synthetic traffic
data, while the arrival rates are those of a real backbone network5. We asked
Nornir to always guarantee a bandwidth equal to the input one, (i.e. to do
not drop any input stream element), while minimizing power consumption. The
application ran for 24 hours, and the results are shown in Figure 2.

No packets were dropped during this experiment and, as shown in the top part
of the figure, Nornir was able to reconfigure the application so to have a power
consumption proportional to the actual input data workload to be processed. In
the bottom part, we can see that this was possible since the number of used cores
and the clock frequency was dynamically changed according to the workload
intensity. When the autonomic strategy was not applied, the application was
always characterized by the maximum power consumption during the 24 hours.

5 http://www.caida.org/data/realtime/passive/?monitor=

equinix-chicago-dirA, 24 hours of traffic between 03/01/2016 and 04/01/2016.

 300

 400

 500

 600

 700

 40
 50
 60
 70
 80
 90
 100
 110

B
a

n
d
w

id
th

 (
k
p
p
s
)

P
o
w

e
r

(w
a
tt
s
)

Bandwidth
Power

20, 1.2

22, 1.5

22, 1.9

22, 2.3

 2 6 10 14 18 22

Time (hours)

#Cores x Frequency

Fig. 2: Time behaviour of an application controlled by Nornir, in presence of fluc-
tuations in the input pressure. Bandwidth is expressed in thousands of packets per
second.

7 Conclusions and Future Work

In this work we presented Nornir, a framework to allow application’s users to
enforce performance and power consumption requirements on streaming appli-
cations. An application programmer will interface the user ’s application to the
Nornir Manager. Moreover, thanks to a modular design, it is possible for an
autonomic strategy designer to embed his own strategies inside Nornir, by fo-
cusing only on the algorithmic part of his strategy, since the monitor and execute
phases are managed by Nornir. Nornir already provides several autonomic
strategies and supports different types of applications, proving its flexibility.

As a future work, we would like to support in Nornir applications expressed
as graphs of operators. In this case, decisions taken by an operator manager may
influence the behavior of other parts of the computation, requiring to coordinate
different managers to find agreements in reconfiguration decisions (e.g. hierar-
chical managers). Another important step would be extending the support to
distributed memory architecture. Eventually, we will provide the user with in-
formation about the cost of reconfigurations, which may be helpful in mitigating
their impact on performance [2].

Acknowledgements This work has been partially supported by the EU H2020-
ICT-2014-1 project RePhrase (No. 644235).

References

1. Apache Storm: http://storm.apache.org/ (2017)
2. Bertolli, C., Mencagli, G., Vanneschi, M.: A cost model for autonomic reconfigu-

rations in high-performance pervasive applications. In: Proc. of the 4th ACM Intl.
Workshop on Context-Awareness for Self-Managing Systems. pp. 3:20–3:29 (2010)

3. Danelutto, M., De Matteis, T., De Sensi, D., Torquati, M.: Evaluating concurrency
throttling and thread packing on smt multicores. In: Proc. of the 25th Euromicro
Intl. Conf. on Parallel, Distributed, and Network-Based Processing (2017)

4. Danelutto, M., De Sensi, D., Torquati, M.: Energy driven adaptivity in stream par-
allel computations. In: Proc. of 23th Euromicro Intl. Conf. on Parallel, Distributed,
and Network-Based Processing. pp. 103 – 110. IEEE, Turku, Finland (2015)

5. Danelutto, M., De Sensi, D., Torquati, M.: A power-aware, self-adaptive macro
data flow framework. Parallel Processing Letters 27(01), 1740004 (2017)

6. De Matteis, T., Mencagli, G.: Keep calm and react with foresight: Strategies for
low-latency and energy-efficient elastic data stream processing. In: Proc. of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). pp. 13:1–13:12 (2016)

7. De Sensi, D., Torquati, M., Danelutto, M.: Mammut: High-level management of
system knobs and sensors. SoftwareX 6, 150 – 154 (2017)

8. De Sensi, D.: Predicting performance and power consumption of parallel applica-
tions. In: Proc. of 24th Euromicro Intl. Conf. on Parallel, Distributed, and Network-
Based Processing. pp. 200 – 207 (Feb 2016)

9. De Sensi, D., Torquati, M., Danelutto, M.: A reconfiguration algorithm for power-
aware parallel applications. ACM Trans. Archit. Code Optim. 13(4), 43:1–43:25
(2016)

10. Gandhi, A., Harchol-Balter, M., Das, R., Kephart, J., Lefurgy, C.: Power Capping
Via Forced Idleness. In: Proc. of Workshop on Energy-Efficient Design (2009)

11. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Transactions on Parallel and Distributed Systems 25(6), 1447–
1463 (June 2014)

12. Goel, A., Steere, D., Pu, C., Walpole, J.: Swift: A feedback control and dynamic
reconfiguration toolkit. Tech. rep. (1998)

13. Hoffman, H.: Seec: A Framework for Self-aware Management of Goals and Con-
straints in Computing Systems. Ph.D. thesis, Cambridge, MA, USA (2013)

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (Jan 2003)

15. Li, B., Nahrstedt, K.: A control-based middleware framework for quality-of-service
adaptations. IEEE Journal on Selected Areas in Communications 17(9), 1632–1650

16. Li, J., Mart́ınez, J.F.: Dynamic power-performance adaptation of parallel com-
putation on chip multiprocessors. Proc. of Intl. Symposium on High-Performance
Computer Architecture pp. 77–87 (2006)

17. Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing with latency guar-
antees. In: The 35th Intl. Conf. on Distributed Computing Systems (2015)

18. Mishra, N., Zhang, H., Lafferty, J.D., Hoffmann, H.: A Probabilistic Graphical
Model-based Approach for Minimizing Energy Under Performance Constraints.
ACM SIGARCH Computer Architecture News 43(1), 267–281 (Mar 2015)

19. Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L., Yu, Y., Zhang, Z.:
Timestream: Reliable stream computation in the cloud. In: Proceedings of the 8th
ACM European Conference on Computer Systems. pp. 1–14. EuroSys ’13, ACM,
New York, NY, USA (2013)

20. Zhang, R., Lu, C., Abdelzaher, T.F., Stankovic, J.A.: Controlware: a middleware
architecture for feedback control of software performance. In: Proceedings 22nd
International Conference on Distributed Computing Systems. pp. 301–310 (2002)

