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In current computing systems, many applications require guarantees on their maximum power consumption
to not exceed the available power budget. On the other hand, for some applications, it could be possible to
decrease their performance, yet maintaining an acceptable level, in order to reduce their power consumption.
To provide such guarantees, a possible solution consists in changing the number of cores assigned to the
application, their clock frequency and the placement of application threads over the cores. However, power
consumption and performance have different trends depending on the application considered and on its
input. Finding a configuration of resources satisfying user requirements is in the general case a challenging
task.

In this paper we propose NORNIR, an algorithm to automatically derive, without relying on historical
data about previous executions, performance and power consumption models of an application in different
configurations. By using these models, we are able to select a close to optimal configuration for the given
user requirement, either performance or power consumption. The configuration of the application will be
changed on-the-fly throughout the execution to adapt to workload fluctuations, external interferences and/or
application’s phase changes. We validate the algorithm by simulating it over the applications of the PARSEC
benchmark suite. Then, we implement our algorithm and we analyse its accuracy and overhead over some
of these applications on a real execution environment. Eventually, we compare the quality of our proposal
with that of the optimal algorithm and of some state of the art solutions.

CCS Concepts: •Theory of computation → Self-organization; Online learning algorithms;
•Hardware → Power estimation and optimization; •Software and its engineering → Software
performance;

Additional Key Words and Phrases: Power-Aware Computing; Online Learning; Self-Adaptive Runtime;
Power Capping; Dynamic Concurrency Throttling; DVFS; Multi-Core

ACM Reference Format:
Daniele De Sensi, Massimo Torquati, and Marco Danelutto. 2016. A Reconfiguration Algorithm for Power-
Aware Parallel Applications. ACM Trans. Architec. Code Optim. V, N, Article 43 (December 2016), 25 pages.
DOI: http://doi.acm.org/10.1145/3004054

1. INTRODUCTION
The problem of writing power-aware applications, providing guarantees on a minimum
performance level or a maximum power consumption, is a challenging hot topic.

Indeed, power consumption management has become a major concern for data cen-
ters due to economic cost, reliability problems and environmental reasons. Several
power capping techniques have been proposed in order to avoid exceeding the avail-
able power or thermal budget [Cochran et al. 2011b], [Gandhi et al. 2009], [Hoffmann
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et al. 2011], [Bhattacharya et al. ]. Such constraints could change dynamically through
time, for example due to different renewable energy availabilities during the day [Chen
et al. 2013] and to satisfy them, we need to guarantee that each single server does not
exceed a certain power budget [Lefurgy et al. 2008].

On the other hand, performance constraints may be set on applications that do not
need to run at their maximum speed [Mishra et al. 2015], [Cochran et al. 2011a], [Li
and Martı́nez 2006], [Shafik et al. 2015]. For example, in a video processing applica-
tion we need to produce the output frames at a minimum rate. Processing the frames
faster than that rate could lead to a higher power consumption, without necessarily
improving the user experience.

A possible approach to the problem is to select the right combination of resources to
be allocated to the application. We call a specific combination of resources a configura-
tion. Static solutions based on complex analytical models are not fully appropriate for
dynamic scenarios. In fact, the performance and the power consumption of the appli-
cation may change during its execution, due to the intrinsic nature of the application
or due to external perturbations. For these reasons, it is of paramount importance to
develop models and runtime systems able to find the optimal configuration to be used
and to dynamically adapt it throughout the entire application execution.

In this work we propose NORNIR, a new algorithm for finding system configurations
that satisfy a power consumption or a performance requirement as provided by the
application user. Furthermore, in case of a performance constraint, among all config-
urations that satisfy that constraint, the algorithm selects the configuration that has
the lowest power consumption (and vice versa in the case of a power consumption con-
straint).

To achieve this goal, the proposed algorithm collects performance and power con-
sumption data for some different configurations while the application is running and
uses these data to perform online training of prediction models. These models will be
used to select the best configuration satisfying the user requirement and to change it
throughout the application execution. The configuration is changed by modifying the
number of cores assigned to the application (Dynamic Concurrency Throttling – DCT),
the clock frequency of these cores (Dynamic Voltage and Frequency Scaling – DVFS)
and the placement of the threads on the cores (Processor Affinity).

The prediction models will be dynamically re-trained if the application enters into
a phase characterised by different performance or power consumption behaviour (e.g.,
when moving from a CPU bound application phase to an I/O bound application phase).
An important property of the proposed algorithm is that it does not rely on any in-
formation coming from previous application runs. Indeed, many existing approaches
leverage on previously collected data (both from the same application or from different
applications) to predict performance and power consumption of an application. How-
ever, such approaches often fail if the application has a behaviour that has not been
previously observed. For this reason, we will consider a worst-case scenario where no
previous data is available or where previously collected data cannot be exploited to
infer the models for new applications, as typical in cloud computing [Armbrust et al.
2010]. Despite being in such worst-case scenario, as we will show in Section 5, we are
able to achieve comparable or in some cases even better results with respect to those
state-of-the-art approaches that leverage on knowledge coming from past applications
executions.

In this work we focus on CPU power consumption since, as shown in [Zomaya and
Lee 2012], CPU is still the most power consuming component in current multicores
architectures. Moreover, operating on memory and I/O power consumption do not lead
in general to significant improvements [Gray et al. 2008], [Zomaya and Lee 2012],
[David et al. 2011].
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To keep our approach as more general as possible, we will isolate and describe the
mechanisms, available in most runtime systems, that a generic runtime system should
provide in order to interact with our algorithm. To evaluate the quality of our proposal,
we first simulate it over the applications of the PARSEC benchmark suite. Then, we
implement our algorithm and we analyse its accuracy and overhead over some of these
applications on a real execution environment. The source code of the algorithm and the
applications used for the validation are publicly available1.

The main contributions of this work may be summarised as follows:

(1) A new algorithm for self-adaptative, power-aware parallel applications. The pro-
posed strategy is able to find a close to optimal [CORES, FREQUENCY, THREADS
PLACEMENT] configuration that satisfies bounds on performance and/or on power
consumption without any historical knowledge about previous applications runs.
Moreover, it re-evaluates the optimal configuration if a change in the application
or in the external environment occurs. The algorithm is able to distinguish intrin-
sic application changes from fluctuations caused by changes in the input pressure,
improving the stability with respect to other existing approaches.

(2) Two models for predicting the performance and the power consumption of parallel
applications at different configurations.

(3) The implementation of the algorithm for a real execution environment and the
validation over several real-world applications with different execution behaviours,
allowing to spot strong and weak points of the proposed strategy.

(4) The comparison of the results with those obtained by the optimal algorithm and by
some other well-known solutions.

The rest of the paper is organised as follows. In Sec. 2 we describe some similar
existing techniques and their strong and weak points. The algorithm proposed in this
work is described in Sec. 3, while Section 4 presents the implementation of our solution
by using a real runtime system. In Sec. 5 we describe the applications we used to
validate our approach and the achieved results, comparing them with those obtained
by other existing techniques. Eventually, Sec 6 concludes the paper, outlining some
possible future directions.

2. RELATED WORK
In this section we describe some existing approaches for finding applications’ configu-
rations satisfying given performance and/or power constraints.

The first set of solutions is characterised by the use of complex analytical models,
obtained by an offline training phase [Curtis-Maury et al. 2008b], [Curtis-Maury et al.
2008a], [Cochran et al. 2011b], [Cochran et al. 2011a]. These approaches are based on
the collection of profiling data for a wide set of different applications, that will be used
to train machine learning algorithms. When a new application is executed, the model
will be instantiated with the parameters monitored at runtime in order to predict the
best available configuration.

In [Delimitrou and Kozyrakis 2014], [Delimitrou and Kozyrakis 2013] the authors
propose a cluster management system to allocate the right amount of resources to
different applications given a performance requirement. By using classification tech-
niques, they are able to perform this decision by exploiting information on previously
executed applications. This work is orthogonal to ours since they consider multiple ap-
plications each one with its own requirement but only performance requirements can
be specified. On the other hand, our work focuses on a single application scenario but
allows to specify both performance and power consumption constraints. In addition to

1http://danieledesensi.github.io/nornir/
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this, [Delimitrou and Kozyrakis 2014] is targeted towards cluster scenarios, operating
on the number of cores per node and on the number of nodes used by each application,
while our work is targeted to a single node scenario and operates at a finer grain, by
changing the number of used cores, their frequency and the threads placement.

Albeit offline approaches are usually characterised by a low runtime overhead, their
accuracy deeply depends on the choice of the data used to train the model. For example,
if a behaviour that has never been experienced in the training phase occurs, these
methods could produce sub-optimal solutions [Domingos 2012], [Mishra et al. 2015],
[Shafik et al. 2015].

To mitigate these limitations, some models integrate the offline collected data with
additional data obtained while the application is running [Mishra et al. 2015], [Filieri
et al. 2014]. However, such solutions still share some of the limitations of the full offline
approaches.

A different approach is to not rely on any previously collected information, similarly
to what our algorithm does, and to only make decisions on the base of the data col-
lected while the application is running. Such kinds of solutions are usually based on
heuristics [Li and Martı́nez 2006], [Porterfield et al. 2013], [Sridharan et al. 2013],
[Wang et al. 2015] or on more complex techniques like control theory [Maggio et al.
2010], optimisation algorithms [Petrica et al. 2013] or online machine learning [Hsu
and Feng 2005], [Shafik et al. 2015]. Albeit they avoid some typical problems of the of-
fline approaches, the collection of runtime data and the computation of the model while
the application is running could introduce a significant overhead. However, as we will
show in Section 5, when lightweight prediction algorithms are used it is possible to
reduce such overhead.

Other methods, orthogonal to our solution, try to constrain the power consumption
or the performance of an application by acting on mechanisms different from those
considered in this work [Totoni et al. 2015]. Another alternative approach to the pre-
sented problem is approximate computing [Vassiliadis et al. 2015] trying to reduce
power consumption by reducing the quality of the results computed by the application.

Overall, we can observe that existing approaches have several limitations. Firstly,
in several cases, the proposed solutions are either simulated or the analysis is done on
post-mortem data [Petrica et al. 2013], [Li and Martı́nez 2006], [Suleman et al. 2008],
[Ding et al. 2008]. Despite a simulation may provide a good idea about the precision of
the model, it is difficult to accurately estimate the run-time overhead of these methods.
As we will show in Section 5, different overheads are introduced when implementing
such models, which in turn may limit the usability of these approaches. Moreover,
some solutions do not explicitly model the power consumption, thus only providing the
possibility to specify performance constraints [Delimitrou and Kozyrakis 2014], [Li
and Martı́nez 2006]. In many cases, they can only find the most efficient [Sridharan
et al. 2013] or the most performing configuration [Pusukuri et al. 2011], [Curtis-Maury
et al. 2008a], [Suleman et al. 2008]. In addition to that, they usually do not distinguish
between the different types of events that can lead to a reconfiguration [Mishra et al.
2015], [Marathe et al. 2015], characterising all these events as generic phase changes.
However, we claim that when such distinction is done, better results can be achieved,
as we will show in Section 5.4.

Among the existing power-aware runtime systems, the one proposed in [Gandhi et al.
2009] works by forcing the core to alternate between active and idle periods. However,
no consideration on its use for parallel applications has been done.
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Table I. Comparison between some existing techniques with the solution proposed in this paper (’NORNIR’).

Power
constr.

Perf.
constr.

Idle
cores DVFS DCT Threads

placement

Online
learning

only

Multi
apps

[Gandhi et al. 2009]
[Cochran

et al. 2011b]
[Delimitrou and
Kozyrakis 2014]

[Marathe et al. 2015]
[Alessi et al. 2015]
[Mishra et al. 2015]

NORNIR (2016)

More recently, in [Mishra et al. 2015] the authors implemented a solution to find the
configuration with the minimum energy consumption under a performance constraint,
by using a model trained offline and by improving it with online collected data2.

The solution proposed in [Marathe et al. 2015] is able to select the most performing
configuration under a power budget by analysing all possible configurations.

The authors of [Alessi et al. 2015], proposed an extension to OpenMP in order to
specify power and performance constraints. The best configuration will be selected by
using hill-climbing heuristics. However, in the results they only show the performance
constrained scenario while the accuracy of the heuristic is not deeply analysed. Differ-
ently from our approach, they also provide the possibility to specify custom adaptation
mechanisms in addition to DVFS and DCT.

Other solutions [Wang et al. 2015], [Hsu and Feng 2005], [Porterfield et al. 2013] only
apply either DVFS or DCT. However, as shown in [Curtis-Maury et al. 2008b], [Dane-
lutto et al. 2015], when these two mechanisms are used together, the range of possible
available configurations is extended and is possible to further reduce the power con-
sumption.

In Table I, we report a summary of the main characteristics of the existing algo-
rithms for performance and/or power capping. The work most similar to ours is [Mishra
et al. 2015]. We will make a comparison in Section 5.

Despite the advantages with respect to existing solutions, our algorithm is not flaw-
less. For example, it mainly works for long-running applications (several tens of sec-
onds, at least). Furthermore, it does not perform well on applications with an ex-
tremely dynamic behaviour (i.e. many very small different phases). However, as shown
in [Sembrant et al. 2012] many real applications are characterised by a small number
of phases (4-8), thus the number of different trainings to be performed is usually lim-
ited and does not significantly impact application performance, as shown in Section 5.
Moreover, in this work we considered the common scenario, typical of many recent
research works in this field, where only one application requires specific performance
or power consumption constraints. Considering multiple applications would pose sig-
nificant extra challenges to be solved (some of them outlined in Section 6), which are
clearly outside the scope of this paper. It is worth to remark that, the proposed solution
allows other applications to run on the system at the same time. The only limitation is
that only one application at a time is allowed to have requirements on performance or
power consumption.

2The approach is general enough and it also works for the power capping scenario, albeit not considered in
[Mishra et al. 2015].
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Table II. Basic metrics that characterise the application.

METRIC DESCRIPTION

Service time TS
Is the average time between the beginning of the executions on

two consecutive elements to be processed.

Service rate µ
Is the inverse of the service time, i.e. the average number of

elements that can be processed by the application per time unit µ = 1
TS

Interarrival time TA
Is the average time between the reception of two consecutive elements

to be processed by the application.

Arrival rate λ
Is the inverse of the interarrival time, i.e. the average number of

elements received per time unit λ = 1
TA

Utilisation ρ Is the ratio between the arrival rate and the service rate ρ = λ
µ

.

Bandwidth B

Is the average number of elements produced by the application per time unit.
When ρ < 1 (i.e. λ < µ), the system can manage all the arriving requests.

In such case, we have B = λ. If this is not the case, the system is
saturated and we have B = µ. In general, we have B = min(λ, µ).

Power consumption P Is the power consumed by the application.

3. OUR ALGORITHM
In this Section, we describe the theoretical foundations we exploit and the algorithm
we propose to dynamically reconfigure an application to satisfy a given bound either
on the performance or on the power consumption. First, we provide a brief background
introducing the used terminology and the base assumptions, then we describe the al-
gorithm starting from the simplest scenario, i.e. there are no internal or external inter-
ferences that alter the application behaviour. Finally, we describe how the algorithm
can adapt the configuration of the application when internal and external conditions
change during the application execution.

3.1. Background
Without loss of generality, we assume that the considered parallel application, and
in particular its runtime system, can be modelled as a queueing network [Thomasian
and Bay 1986]. In a nutshell, the parallel runtime is seen as a graph whose nodes
are threads (service centres) and edges among threads are communication channels
implemented as queues.

We characterise such queueing system with few metrics described in Table II.
In general, both the power consumption and the service rate depend on the amount

of resources used by the application. Since in this work we are considering the number
of physical cores n used by the application, their frequency f and the threads place-
ment p, we denote the service rate as µ(n, f, p) and the power consumption as P (n, f, p).
In Figure 1 is reported a simple schema of the possible behaviour of µ, λ and B with
respect to the number of cores used for executing the application.

The target of this work is to design an algorithm capable of managing the following
scenarios:

— Given a bandwidth requirement B, the algorithm should find a triplet < ñ, f̃ , p̃ >

such that B(ñ, f̃ , p̃) ≥ B and such that does not exist any other triplet < n, f, p >

that satisfies P (n, f, p) < P (ñ, f̃ , p̃). That means, among all the configurations satis-
fying the bandwidth requirement, the algorithm should pick the one with the lowest
power consumption.

— Given a power consumption requirement P , the algorithm should find a triplet <
ñ, f̃ , p̃ > such that P (ñ, f̃ , p̃) ≤ P and such that doesn’t exists any other triplet
< n, f, p > with B(n, f, p) > B(ñ, f̃ , p̃). That means, among all the configurations
satisfying the power requirement, the algorithm should pick the most performing
one.
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μ
λ

B

N

μλ B

Fig. 1. Left: A possible behaviour of interarrival rate, service rate and bandwidth with respect to the
amount of used number of cores n. Right: A simple runtime modelling with respect to the metrics of in-
terest.

The algorithm is designed in order to satisfy such requirements even if the service
rate or the interarrival rate change during application execution.

Indeed, service rate may change due to external interferences (e.g. other applications
running on the system) or to intrinsic characteristics of the application. For example,
consider a video surveillance application for counting people in a crowded places. Even
if the interarrival rate is steady through time, the amount of time required to process
each frame may be different in different part of the day. Accordingly, we could have a
lower service rate when there are many people in a video frame and a higher service
rate when the scene is not very crowded.

On the other hand, the interarrival rate mainly depends on external factors and it
is not under the direct control of the application. It may change during application
execution as well. If we consider for example a network monitoring application, the
interarrival rate will be higher during working hours while it will be lower during the
night. The proposed algorithm is able to detect these two different cases and to manage
them differently.

If the user knows the number of elements s that have to be processed by the appli-
cation, instead of setting a bandwidth requirement, he can express the performance
requirement as a maximum execution time T . Since T = B · s, the algorithm will auto-
matically translate the execution time requirement into a bandwidth requirement. If
the average bandwidth changes during application progress, the bandwidth require-
ment will change too, in order to satisfy the execution time constraint specified by the
user.

3.2. Stationary behaviour
To simplify exposition, we first consider the case where both µ(n, f, p) and λ are con-
stant throughout the execution. Then, we will extend the algorithm to consider a more
generic case where they both can change.

We consider two distinct phases throughout the application execution: calibration
phases and steady phases (see Figure 2).

When the application starts, the runtime system enters the calibration phase. In
this phase, it executes the following steps:

(1) The configuration of the application is changed, by selecting a configuration not yet
visited.

(2) The service rate and power consumption of the application are monitored for a
short predefined period of time.

(3) The monitored data is used to refine the power consumption and service rate mod-
els.

(4) Values predicted by the model are then compared with those monitored in the
current configuration. If the prediction error is lower than a specified threshold
value, the calibration phase finishes. Otherwise, the process is iterated.
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HIGH ERROR 

SELECT BEST 

CONFIGURATION 

TIME

REFINE MODEL

HIGH ERROR 

REFINE MODEL

LOW ERROR 

STEADY PHASE

Fig. 2. Different phases of our algorithm.

Mainly, the runtime system is training a machine learning algorithm while the ap-
plication is running. Step 4 is based on the assumption that the error is uniformly
distributed over all possible configurations so that, by looking at the prediction error
of the current configuration, we may have an estimation of the error in all other possi-
ble configurations. We observed that this property holds in practice for the prediction
algorithms we propose. However, in case the error is not uniformly distributed, the
effect is that the algorithm will potentially miss-predict some configurations and will
select a sub-optimal configuration.

When a calibration phase finishes, we have accurate models for predicting service
rate and power consumption of the application in all possible configurations. Start-
ing from the service rate model, we can obtain a prediction of B(n, f, p) by computing
B(n, f, p) = min(µ(n, f, p), λ). To obtain λ, we can then use the service rate model
to select the configuration with the highest service rate. Since ρ(n, f, p) = λ

µ(n,f,p) ,
then λ = µ(n, f, p)ρ(n, f, p). According to queueing theory, this equation holds only
if ρ(n, f, p) < 1. If this is not the case, we can consider λ = ∞. Indeed, independently
from its real value, it will always be greater than µ for every (n, f, p) triplet. Please
note that this is an important step. Indeed, if we just consider B(n, f, p) = µ(n, f, p) we
could have a low utilisation of resources since the application is actually throttled by
the low input rate, thus leading to a power inefficient execution.

Once we are able to predict µ(n, f, p) and P (n, f, p) for all < n, f, p > triplets3, the
algorithm can select the best configuration according to the requirements given by
the user and moves the application to that configuration, thus entering in the steady
phase. If, according to the models, there are no configurations that satisfy the require-
ment, the algorithm selects the closest one to the requirement.

It is worth noting that, during the calibration phase the application is running, and,
when switching from calibration to steady phase, the application is neither stopped
nor the previously computed results are discarded. However, during calibration phase
we still do not have the service rate and power models, and thus we could run the
application into configurations which might violate the requirements. For this reason,
calibration phases should last as short as possible. Alternatively, it is possible to set
a maximum duration for the calibration phase (concerning visited configurations or
absolute time) and to trade lower prediction accuracy with shorter calibration time. In
Section 5 we analyse the trade-off between prediction accuracy and number of configu-
rations visited during calibration phase as well as the impact of the calibration phase.

3The range of possible frequencies is discretized according to the capabilities of the underlying hardware.
In general, only some specific frequencies can be selected.
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To shrink the duration of the calibration phase, the algorithm could explore multiple
configurations in parallel. We do not consider this possibility in our experiments due
to the limited frequency scaling capabilities of our target architecture (we can parti-
tion the cores at most in two groups running at two different frequency). Another way
to reduce calibration time is to exploit information about previously executed applica-
tions [Mishra et al. 2015], [Delimitrou and Kozyrakis 2014]. However, as anticipated
in Section 1, we are considering a worst-case scenario, where such information is not
present or cannot be exploited, for example, because the application is too different
from those already submitted to the system.

The following pseudocode shows the proposed algorithm when TS(n, f, p) and TA
never change throughout the execution.
ALGORITHM 1: Reconfiguration algorithm - Stationary case - Part 1

1 Function FindHighestMuConf()
2 µmax ← 0;
3 forall n, f, p do
4 µpred, Ppred ← Predict(n, f, p);
5 if µpred > µmax then
6 µmax ← µpred;
7 best← n, f, p;
8 end
9 end

10 return best;

11 Function GetBandwidthIn()
12 maxMuConf← FindHighestMuConf();
13 ChangeConfiguration(maxMuConf);
14 Sleep(samplingPeriod);
15 µreal, Preal, ρreal ←Monitor();
16 if ρreal < 1 then
17 return ρrealµreal
18 else
19 return∞;
20 end

21 Function FindBestConfiguration()
22 Pmin ←∞;
23 λ← GetBandwidthIn();
24 forall n, f, p do
25 µpred, Ppred ← Predict(n, f, p);
26 Bpred ← min(λ, µpred);
27 if Bpred ≥ Breq and Ppred < Pmin then
28 Pmin ← predictedPower;
29 best← n, f, p;
30 end
31 end
32 return best
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ALGORITHM 2: Reconfiguration algorithm - Stationary case - Part 2
1 Function Calibrate()
2 µreal, Preal ←Monitor();
3 εµ ←∞;
4 εP ←∞;
5 repeat
6 Refine(c, µreal, Preal);
7 c← PickUnvisitedConfiguration();
8 µpred, Ppred ← Predict(c);
9 ChangeConfiguration(c);

10 Sleep(samplingPeriod);
11 µreal, Preal ←Monitor();

12 εµ ←|
µpred−µreal

µreal
|;

13 εP ←|
Ppred−Preal

Preal
|;

14 until εµ < threshold and εP < threshold;
15 return FindBestConfiguration();

16 Function Main()
17 c← Calibrate();
18 ChangeConfiguration(c);

3.3. The prediction algorithm
By analysing the algorithm, we can identify four primary functions: Monitor, Refine,
Predict and ChangeConfiguration. We now describe the Refine and Predict routines,
while Monitor and ChangeConfiguration are implementation dependent and will be
discussed in Section 4.

We first describe how to predict performance and power consumption for different
cores n and frequency f . Then, we extend the models to consider different threads
placements p. To predict power consumption and service rate of the application we
decided to start with some general analytical models and to derive their application
and architecture specific parameters at runtime by using linear regression analysis. By
using linear regression [Montgomery and Peck ], we model the relationship between
two or more independent variables (called predictors) and a dependent variable (called
response) by fitting a linear equation to observed data. In our case, the predictors are
the number of cores used by the application and their frequency, while the response is
the service time or the power consumption. Suppose we made a set of n observations
to obtain the values of the responses y1, y2, . . . , yn. Let xi = xi,1, xi,2, . . . , xi,p denote the
p predictors for the observation i. Then we have:

yi = a0 + a1xi,1 + · · ·+ apxi,p + εi (1)

where ai is a regression coefficient and εi is a term representing a random error due
to measurement error or fluctuations in the results.

By fitting a regression model to observations, we determine the ai coefficients, thus
enabling the prediction of the responses for the unobserved predictors. To fit the model,
we use the least squares method, minimising the sum of the squares of the residuals,
where a residual is the difference between the real value of the dependent variable
and the value predicted by the model.

In our algorithm, the Refine routine will add a new observation and the Prediction
routine will use the observations we made to derive the ai coefficients. Accordingly, we
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need to express service time and power consumption in a form similar to the one in
Equation 1, where ai coefficients are architecture and application specific values.

Concerning the service time, we model it by using the Universal Scalability Law
[Gunther 2006]:

TS(n) =
TS(1)

n
+
TS(1) · α · (n− 1)

n
+ TS(1) · β · (n− 1) =

= a1
1

n
+ a2

n− 1

n
+ a3(n− 1)

(2)

where α and β are application dependent constants, representing two possible is-
sues that limit the achievable scalability. α represents the weight of the contention on
shared data, while β represents the cost needed to keep the writable data coherent.

Since the above equation does not depend on the frequency f , we will only make
observations on configuration where f is the minimum frequency possible fmin. In
this way, the model we derive will be able to only predict service times of the form
TS(n, fmin).

To obtain the service time for different frequencies we use the following algorithm.
First we monitor the service time TS(1, fmax) and we compute γ = TS(1,fmin)

TS(1,fmax)
. Then we

can compute the service times for any configuration where f = fmax as TS(n, fmax) =
TS(n,fmin)

γ . To compute service times for frequencies different from fmax and fmin, we
observe that the service time has a linear relationship with the frequency [Xie et al.
2005], [Lee et al. 2007]. Therefore, for a given n, we can express TS(n, f) = a + b · f .
Since we already know TS(n, fmin) and TS(n, fmax), we can obtain the TS(n, f) by using
the equation for a line passing through two points:

TS(n, f) =
TS(n, fmax)− TS(n, fmin)

fmax − fmin
· f +

TS(n, fmin) · fmax − TS(n, fmax) · fmin
fmax − fmin

(3)

Concerning the power consumption model, it is inspired to the one presented in
[De Sensi 2016]. However, the model has been significantly improved to consider dif-
ferent threads placements and different frequencies for active and inactive CPUs. Ac-
cording to [Chandrakasan and Brodersen 1995], [Alonso et al. 2014], [Kim et al. 2003],
the power consumption of an active CPU can be modelled as:

P (n, f, v) = vIleak +Acv2fn (4)

where v is the voltage, Ileak is the leakage current, A is the activity factor and c is
the capacitance. For our purposes, we can consider A, c and Ileak as constants.

When more than one CPU is present on the system, we can apply this formula sep-
arately for each of them. To further reduce power consumption, we run the unused
CPUs at the minimum available frequency fmin, with a corresponding operating volt-
age vmin. Since for unused CPUs we have n = 0, their power consumption is vminIleak.
If k and k are the number of active and inactive CPUs respectively, f is the frequency
of active CPUs and v is the voltages of the active CPUs, then we have :

P (n, f, v, k, k) = kvIleak + kvminIleak +Acv2fn (5)

To remove the dependency from v, we can observe that the voltage is strictly corre-
lated to the frequency, since by increasing the frequency we raise the operating voltage
and vice versa. Consequently, we can use a tabular function V (f) to get the voltage
value associated to a specific frequency level f . This function is architecture specific
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and may be obtained programmatically or by using the values provided by the CPU
vendor. We can then rewrite equation 5 as:

P (n, f, k, k) = kV (f)Ileak + kvminIleak +AcV (f)2fn (6)

Let K be the number of CPUs available on the target architecture, then we have
k = K − k.

P (n, f, k) = kV (f)Ileak + (K − k)vminIleak +AcV (f)2fn =

= Ileak(k(V (f)− vmin) +Kvmin) +AcV (f)2fn
(7)

Since the number of active CPUs depends on the specific thread placement, we will
discuss how to remove this dependency in Section 3.3.1

3.3.1. Different threads placements. Some applications may be sensitive to thread place-
ment (also known as thread-to-core affinity). For example, due to contention on shared
caches, some memory intensive applications may benefit from a sparse placement, try-
ing to minimise the number of caches shared by active threads. However, due to a
higher amount of used resources, this placement will be in general more power con-
suming. We will consider in this work two different types of threads placements: linear
and interleaved. Linear placement minimises the number of used CPUs, by placing a
thread on a new CPU only if the all the cores on the used CPUs have been already
allocated to other threads. On the other hand, interleaved placement minimises the
amount of resources shared by threads, by allocating one thread per CPU in a round-
robin way. For example, suppose to have a machine with 2 CPUs, each one with 4 cores
on top and that the algorithm must place 6 threads over them. In the linear case it will
place 4 threads on the first CPU (one per core) and 2 threads on the second one while
with an interleaved placement, the algorithm will allocate 3 threads on the first CPU
and 3 threads on the second one.

To evaluate the performance of these two different alternatives, the algorithm will
simultaneously derive one performance model for the linear case and one for the in-
terleaved case. During the calibration phase, configurations characterised by a linear
placement will be used to refine the model for the linear case while configuration char-
acterised by an interleaved threads placement will be used to improve the other per-
formance model. When the optimal configuration must be selected, both models will be
evaluated.

A similar process is performed for the power consumption model. However, in this
case the number of used/unused CPUs changes according to the specific thread place-
ment. Let k̃ be the number of cores available for each CPU. For the linear placement
we have:

k =

⌈
n

k̃

⌉
(8)

While for the interleaved placement we have:

k = min(n,K) (9)

Having at most one thread per physical core, these two values clearly correspond to
minimising and maximising the number of used CPUs for a given n.

Eventually, in case of linear placement, we may rewrite Equation 7 as:
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P (n, f) = Ileak

[⌈
n

k̃

⌉(
V (f)− vmin

)
+Kvmin

]
+AcV (f)2fn =

= a0

[⌈
n

k̃

⌉(
V (f)− vmin

)
+Kvmin

]
+ a1V (f)2fn

(10)

For interleaved placement, Equation 7 can be rewritten as:

P (n, f) = Ileak

[
min(n,K)

(
V (f)− vmin

)
+Kvmin

]
+AcV (f)2fn =

= a0

[
min(n,K)

(
V (f)− vmin

)
+Kvmin

]
+ a1V (f)2fn

(11)

We would like to point out that this approach to application placement is general
and can be extended to consider other threads placements as well.

3.4. Variations in service time and interarrival time
During the steady phase, the runtime system keeps collecting and analysing moni-
tored data. Two different types of events can trigger a configuration change. The first
is a change in the application phase (e.g. the application finishes a CPU intensive
phase and enters into an I/O intensive phase). In this case, the already computed
models would no longer be valid and a new calibration phase should be executed to
obtain new service time and power consumption models. To detect such situation, sev-
eral techniques have been recently proposed [Sembrant et al. 2011], [Nagpurkar et al.
2006]. Such techniques can be applied online while the application is running, thus are
particularly suitable for our purposes. Therefore, we introduce a new function, called
PhaseChanged, that tell us if an application phase change has been detected or not. If
a phase with such characteristics was already detected before, the already computed
models can be recalled and the new calibration can be avoided. The other event that
can trigger a reconfiguration is a change in the arrival rate λ. Indeed, since we express
the performance experienced by the user as B(n, f) = min(λ, µ(n, f)), if λ changes, we
may need to change configuration in order to satisfy user requirement. However, in
this case there is no need to obtain new models and we can just recompute the best
configuration. Distinguishing between these two types of events is a crucial point of
our algorithm and it is one of the main characteristics that distinguish it from existing
online approaches. We will evaluate the importance of this point in Section 5.4.

The new general control loop of our algorithm is shown in the following pseudocode.
The Calibrate() and FindBestConfiguration() functions are the same one presented in
the stationary case scenario.
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ALGORITHM 3: Reconfiguration algorithm - General case
1 Function Main()
2 c← Calibrate();
3 ChangeConfiguration(c);
4 while true do
5 Sleep(samplingPeriod);
6 if PhaseChanged() then
7 c← Calibrate();
8 ChangeConfiguration(c);
9 else

10 if InputBandwidthChanged() then
11 c← FindBestConfiguration();
12 ChangeConfiguration(c);
13 end
14 end
15 end

4. IMPLEMENTATION
In this Section, we discuss the main choices we made to implement the algorithm on a
real execution environment.

To reach this goal, we must provide suitable Monitor() and ChangeConfiguration()
routines. The Monitor() routine should be able to interact with the runtime to extract
µ and ρ values. Such values can be computed by the runtime by performing internal
monitoring or by providing appropriate instrumentation calls to the application. Since
it is not currently possible to isolate the power consumption of individual applications,
the power consumption P can, in general, be obtained by monitoring that of the whole
system. Therefore, the algorithm limits the power consumption of the entire architec-
ture rather than that of the runtime only. Thus, if other applications are running, we
reconfigure the runtime by considering the power consumed by all running applica-
tions. Power consumption can be monitored by interacting with the operating system
or with external power metering devices. Concerning the ChangeConfiguration() rou-
tine, it should be able to change the number of physical cores used by the runtime,
their clock frequency and the threads placement. All these operations could be done by
interacting with the operating system only. For example, the number of used cores and
the threads placement can be changed by appropriately setting the thread affinities,
while the clock frequency can be changed with appropriate tools (e.g. cpufreq-set).
Alternatively, it is possible to ask the runtime system to change the number of cores it
uses by changing the number of activated threads. For example, OPENMP provides a
omp set num threads call, and similar functions are present in other runtime systems.
Such interactions are depicted in Figure 3.

For all the interactions with the operating system, we used the MAMMUT library4.
MAMMUT (MAchine Micro Management UTilities) provides a set of functions for the
management of local or remote machines. It abstracts, through an object oriented in-
terface, a set of features normally provided by the OS (e.g. clock frequencies manage-
ment, topology analysis, energy profiling). The runtime system we choose to test our
algorithm is FASTFLOW [Danelutto and Torquati 2015], a C++ parallel programming
framework. This choice has been driven by the fact that we have the expertise re-
quired to interact with its internal mechanisms in order to implement Monitor() and

4http://danieledesensi.github.io/mammut/
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ChangeConfiguration() routines. However, any runtime system that provides similar
mechanisms can be used.

MONITORING 

REQUEST/ DATA

RECONFIGURATION 

REQUEST

ALGORITHM RUNTIME

APPLICATION

OPERATING
SYSTEM

Fig. 3. Interaction between the algorithm, the runtime, and the operating system.

In our implementation, the algorithm is executed in a separate external thread,
which interacts with the runtime via shared memory. The sampling interval is set by
default to 0.1 seconds for the calibration phase and to 1 second for the steady phase.
The sampling is more aggressive during calibration in order to reduce its duration.
Furthermore, to avoid reconfigurations due to temporary spikes in the observed data
samples, we apply exponential smoothing to monitored data. Accordingly, temporary
fluctuations are filtered out, and the algorithm only reacts to steady and persistent
changes in the runtime behaviour.

Our implementation of the algorithm and the applications we used to perform our
experiments have been released as open source5.

5. RESULTS
In this Section, we first simulate the proposed algorithm over all the applications of
the PARSEC benchmark suite, comparing the results obtained by our algorithm against
some well-known state of the art solutions. Then, we report the results obtained by a
real parallel implementation of some of the PARSEC applications obtained by using
the FASTFLOW parallel framework. We will analyse the results showing the overhead
introduced by the algorithm with respect to the optimal solution, both in stationary
and non-stationary situations.

All experiments were conducted on an Intel workstation with 2 Xeon E5-2695
@2.40GHz CPUs, each with 12 2-way hyperthreaded cores, running with Linux x86 64.
This machine has 13 possible frequency levels: from 1.2GHz to 2.4GHz with 0.1GHz
steps. We did not used hyperthreading, thus we have 624 possible configurations (13
frequency steps × 24 physical cores × 2 possible placements). The MAMMUT library
has been used to compute the voltage table. On the considered platform, MAMMUT
uses RAPL counters [Hähnel et al. 2012] to measure the power consumption.

In all the presented results, we only considered the time spent in the parallel sec-
tions of the applications, without considering initialisation and cleanup phases. This
is a common assumption (as in [Cochran et al. 2011a] and [Pusukuri et al. 2011])
motivated by the fact that this work mainly focuses on optimising parallel phases. Ini-
tialisation and cleanup of the algorithm are still included, we just do not include the
serial part of the application (e.g. loading the data-set from the disk).

5.1. Prediction simulation
To perform the simulation of all PARSEC applications, we first run each application
in each possible system configuration. Then, re-ran all applications using the NORNIR
runtime by simply overriding the call to the Monitor() function in the control loop in
order to use as monitoring data those obtained by the previous runs. By applying this

5http://danieledesensi.github.io/nornir/
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process, we can simulate only the stationary case (i.e. no changes in service rate and
arrival rate). The non-stationary case will be analysed considering a real implemen-
tation of some parallel applications. We set the thresholds for the calibration phase
termination to 10%. Higher values would lead to faster convergence and lower accu-
racy while lower values would result in slower convergence and higher accuracy. The
tradeoff between performance model accuracy and number of configurations visited
during the calibration phase is analysed in Figure 4. We achieved similar results for
the power consumption model but they are not shown due to space constraints.
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Fig. 4. Tradeoff between performance prediction accuracy and number of configurations visited during
calibration phase.

In the figure, we have on the x-axis the number of configurations explored during the
calibration phase, while on the y-axis we have the average error over all the PARSEC
applications. For each PARSEC application, we considered as error the Mean Absolute
Percentage Error (MAPE), defined as:

ε =
1

c

c∑
i=1

∣∣∣∣Ai − EiEi

∣∣∣∣ (12)

where c is the total number of configurations (both those visited as well as those non-
visited in the calibration phase), Ai is the real performance and Ei is the predicted
performance. As shown in the figure, the proposed performance prediction model is
able to quickly reach a low error with few calibration points.

To evaluate the quality of our proposal, we need to test if our algorithm is able to
find a solution that satisfies the user requirement and, if so, how much such solution
differs from the optimal one. Indeed, due to inaccuracy in the models and to overheads
introduced by the algorithm, the configuration found by NORNIR could, in general,
have worse performance or power consumption than the optimal one. For example,
let’s suppose to have a power budget of 40 Watts and that the optimal configuration
consumes 39 Watts and has a service rate of 100 elements per seconds. Due to predic-
tion inaccuracy, we could estimate that this optimal configuration consumes 41 Watts
and then discarding it, or instead, estimate as the optimal solution a configuration
that has the requested power consumption but a lower service rate (e.g. 80 elements
per second), rather than the true optimal configuration. We say that the configuration
found by NORNIR has a loss of 100−80

100 × 100.0 = 20% with respect to the optimal so-
lution. Similar situations may occur for performance constraints. Moreover, in some
cases such errors may lead to a violation of the user requirements.
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To avoid biases in the results due to specific requirements choices, we need to test
NORNIR over a wide range of different requirements. To this purpose, we adopted a
technique used in similar works [De Sensi 2016], [Mishra et al. 2015]. For example, if
we need to specify a power constraint for an application that has a minimum power
consumption of 20 Watts and a maximum of 220 Watts, then we will use bounds equal
to 40, 60, . . . and 200. Basically, we slice the range in 10 equal intervals in order
to cover the entire spectrum of possible power consumptions, avoiding biases due to
specific constraints choices. The same technique has also been adopted for the per-
formance bounds. For each application, we show the average values obtained over all
these constraints.

We compared our reconfiguration algorithm with the one presented in [Mishra et al.
2015]. Such solution uses an offline approach based on previous profiling of the appli-
cations. This profiling data is integrated with information collected online while the
application is running. To perform the experiments, we used the publicly available
source code provided by the authors. We call this approach MIXED. For the experi-
ments with a performance constraint, we have also compared our approach with a
well-known heuristic presented in [Li and Martı́nez 2006]. This heuristic uses a com-
bination of hill climbing and binary search algorithms to find the lowest power consum-
ing solution under a performance constraint. However, it is not able to find the most
performing solution under a given power budget. We call this algorithm HEURISTIC.

The first result we obtained is that both the NORNIR algorithm and the HEURIS-
TIC have been able to satisfy the specified user requirement in all the presented test
cases. On the contrary, the MIXED solution missed the requirement in 51.4% of the
cases when a power consumption constraint is specified and in 2.8% of the cases where
a minimum performance level is required. Concerning the number of configurations
visited before finding the optimal one, both NORNIR and HEURISTIC require 8 steps in
average for both the performance constraint and the power constraint cases. However,
as shown in Table III, the solutions found by the HEURISTIC algorithm are generally
worst than the one found by NORNIR. On the other hand, MIXED performs a fixed
number of steps (set to 20 by default in the source code provided by the authors). How-
ever, albeit the number of steps is higher than those required by NORNIR, the accuracy
is not better. Moreover, we believe that the reason why this approach misses the target
in 51.4% of the power consumption requirements is due to the choice of using a fixed
amount of configurations to derive the model. Indeed, if it were possible to build the
model incrementally, the accuracy would be probably improved by adding some more
point.

In Table III we show the loss of the solutions found by the algorithms with respect
to the optimal configurations, for all the applications of the PARSEC benchmark suite6.
For the MIXED solution the results for some benchmark are marked with N.D.. Indeed,
MIXED requires all the applications to have the same number of configurations. How-
ever, some of these applications can only run with some specific number of threads.
Accordingly, it was not possible to predict values for such applications. Other results
are marked as MISS, to indicate that the algorithm was not able to satisfy the user
requirement in any of the tests for that application.

5.2. Accuracy and overhead analysis on a real environment
In this Section, we analyse the overhead introduced by the algorithm execution and
its accuracy on real parallel executions in a stationary situation. To obtain these re-
sults, we implemented two PARSEC applications (blackscholes and canneal) by using

6X264 benchmark is missing because we were not able to run it over our target architecture.
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Table III. Loss percentage of the found configurations with respect to the optimal ones.

BENCHMARK
PERFORMANCE CONSTRAINT POWER CONSTRAINT

NORNIR MIXED HEURISTIC NORNIR MIXED

BLACKSCHOLES 2.264 7.527 4.935 0.881 0.808
BODYTRACK 0.571 5.766 2.026 1.471 2.612

CANNEAL 1.749 10.726 6.106 2.831 15.313
DEDUP 4.815 N.D. 13.268 6.092 N.D.

FACESIM 0.122 N.D. 26.623 0.000 N.D.
FERRET 0.000 N.D. 7.679 0.549 N.D.

FLUIDANIMATE 0.357 N.D. 20.892 1.164 N.D.
FREQMINE 1.268 2.831 2.836 1.838 MISS
RAYTRACE 2.239 4.144 6.385 0.296 MISS

STREAMCLUSTER 3.143 15.762 9.327 5.763 9.304
SWAPTIONS 1.719 1.635 2.936 1.928 0.471

VIPS 0.769 1.016 5.397 0.428 0
AVERAGE 1.584 6.176 9.034 1.936 4.751

Table IV. Percentage of tests for which a solution satisfying the user requirement was
found.

NORNIR NORNIR+PDP16 MIXED HEURISTIC RAPL

% SUCCESS 100% 100% 84,03 % 93% 80,5%

the FASTFLOW parallel framework7. In addition to that, we used some applications
already implemented in the FASTFLOW framework: a data compressor (pbzip28) and
a video denoiser (denoiser). For the two PARSEC applications we used the native input
provided together with the applications. For pbzip2 we used a 6,3GB file containing
a dump of all the abstracts present on the English Wikipedia on 01/12/2015. For the
denoiser application we used a 1 hour length, 480x270 resolution video.

We compare the results with those obtained by replacing the prediction models of
NORNIR with the models presented in [De Sensi 2016] (denoted as NORNIR+PDP16).
For the power capping experiments, we also compared our algorithm with a hardware-
enforced solution (RAPL) available on newer Intel’s processors [Rountree et al. 2012],
which can be used to limit the maximum power consumption over a time window. We
set a time window of 1 second, equal to the one used by NORNIR. For each constraint,
we repeated the test 10 times and for each application we show the average value
of the obtained results over all possible constraints, as well as their pooled standard
deviation.

User requirements satisfaction. In Table IV we report the percentage of tests for which a
solution satisfying the user requirement was found.

Loss with respect to optimal solution. However, even when a configuration is found, such
configuration could be far from the optimal, due to overhead and prediction inaccuracy.
To understand the possible overhead introduced by the algorithm execution, consider
the case where the user set a power constraint of 50 Watts and let’s assume that the
most performing configuration under this budget consumes exactly 50 Watts. Since
the execution of the algorithm is also contributing to the power consumption, the
real power budget available for the application execution will be less than 50 Watts
and the optimal configuration under these conditions will most likely process a lower
bandwidth with respect to the true optimal one. Accordingly, the results presented in
Figure 5 about loss percentage, include both the overhead introduced by the algorithm
and the inherent inaccuracy of the prediction models.

7http://mc-fastflow.sourceforge.net
8http://compression.ca/pbzip2/
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Fig. 5. Loss percentage with respect to the optimal configuration when a constraint on the performance or
power consumption is required. When the bar is not shown, the algorithm found the optimal solution.

As we can see from the figure, the configurations found by our algorithm are at
most 5% worst than the true optimal configurations. When the bar is not shown, there
is no loss with respect to the optimal configuration. In all the experiments NORNIR
found a better solution than the other algorithms. On about 40% of the experiments,
the RAPL solution violates the power constraint. We believe that this happens because
such solution mainly operates on hardware mechanisms while NORNIR can also modify
the structure of the application. However, it is worth noting that the RAPL solution has
the advantage of not requiring any explicit interaction with the runtime system of the
applications. For some constraints, NORNIR is able to reduce the power consumption
by 10.37% and to increase the performance by 29.64% with respect to NORNIR+PDP16.

Calibration time. Another important analysis is about the time spent in the calibration
phase. Albeit during the steady phase our model always satisfies the user require-
ments, during the calibration phase we have no guarantees, since the algorithm is still
deriving prediction models and is moving from one configuration to another without
knowledge of their performance and power consumption. In the simulated experiments
we gave results about the average number of steps required. However, we would like to
analyse the percentage of the total execution time spent during the calibration phase
for real executions.

Figure 6 reports these data for each application. The results show that the runtime
system spends around 10% of the total execution time for calibration. Note that, while
the algorithm is calibrating, the application is producing useful results. It is important
to remark that, albeit our approach mainly targets long running applications, 20% of
our test cases have an execution time below 20 seconds. For applications with longer
execution time, the calibration time has a much lower impact. Alternatively, the user
can specify a maximum calibration duration, at accuracy’s expense. The HEURISTIC
approach is always characterised by a lower calibration time, due to the simplicity
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Fig. 6. Percentage of total execution time spent during the calibration phase.

Table V. Average calibration time (seconds) of NORNIR for each application.

APPLICATION BLACKSCHOLES CANNEAL PBZIP2 DENOISER

CALIBRATION TIME 2.123 0.488 15.793 4.401

of the algorithm. However, the solution found is usually worst than the one found by
NORNIR. On the other hand, MIXED solution always exhibits a higher calibration time,
both caused by the fact that the number of configurations to be explored is fixed and
also by the higher latency required to compute the model once all the data has been
gathered. NORNIR+PDP16 algorithm is characterised by a lower calibration time with
respect to NORNIR because the number of visited configurations is lower since different
threads placements are not considered. Calibration time for the RAPL solution is not
reported since it is always very close to 0.

In Table V we reported the absolute average calibration time in seconds spent by
NORNIR for each application. The reason why different applications have different
calibration times is due to some implementation choices. When NORNIR sends a mon-
itoring request to the application runtime, the runtime will forward the request to
each of its threads. However, the threads can only reply to the request if they are not
currently processing an input element. Accordingly, the longer is the average time to
process an input element, the longer will be the time the algorithm has to wait for the
monitored data, and consequently the longer the calibration will last.

5.3. Phase change
After analysing the quality of the algorithm in a stationary situation, we analyse how
it reacts when a phase change is detected. For this experiments, we detect a phase
change when the variation in the service rate is greater than a given threshold. In
general, the greater the threshold value, the more the algorithm will be stable and
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less reactive (and vice versa). We experimentally found that a threshold of 40% is a
good balance between stability and reactiveness on the given platform.

We consider the denoiser application with variable input resolutions 9. Since the
application exhibits different service rate and power consumption trends for different
resolutions, when the input resolution changes, a phase change is detected and new
models are computed. For this experiment, we used a 960x540 resolution input that,
between 0 and 42 seconds and between 100 and 141 seconds, drops to 480x270. The
bandwidth required (B) is 200 frames per second.
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Fig. 7. Reaction of the algorithm to phase changes.

Figure 7 shows how the NORNIR algorithm changes the configuration of the appli-
cation in order to satisfy the requirement. Moreover, as we can see from the bottom
part of the graph, the configuration found is very close to the optimal one. Around
42 and 100 seconds, the algorithm detects that the application entered in a different
phase, thus it starts a new calibration. As described in Section 3, while calibrating, the
system cannot guarantee that the requirement is satisfied nor that it selects configura-
tions close to the optimal one. Moreover, although the system succeeds in guaranteeing
the user requirement, it may still select a configuration with sub-optimal power con-
sumption (e.g., between 42 and 100 seconds). A similar behaviour to the one reported in
Figure 7 occurs even when interferences are caused by external applications running
on the same system.

5.4. Input bandwidth change
To analyse how the algorithm reacts to fluctuations in the arrival rate, we considered
a network monitoring application [Danelutto et al. 2015]. This application analyses
all the traffic travelling over a network, applying Deep Packet Inspection techniques to
find possible security threats. For our experiments we used synthetic traffic data, while
the arrival rates are those of a real backbone network10. For this experiment we used a
dynamic requirement, i.e. the algorithm must be able to always keep µ ≥ λ

0.9 . By doing
so, we ensure that all the data received are processed and, at the same time, the system
is not under-utilised since the utilisation is ρ = λ

µ ≤ 0.9. The application is executed

9Current video streaming protocols dynamically adjust the video resolution according to the available net-
work bandwidth.
10http://www.caida.org/data/realtime/passive/?monitor=equinix-chicago-dirA, 24 hours of traffic between
03/01/2016 and 04/01/2016.
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for 24 hours, and the results are shown in Figure 8. In the upper part of the figure, we
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Fig. 8. Time behaviour of an application in presence of arrival rate fluctuations. Bandwidth is expressed in
thousands of packets per second.

show that the algorithm is able to always satisfy the user requirement, independently
from the arrival rate. In the central part we show the output bandwidth B (arrival rate
λ is not shown since we were always able to keep B = λ) and the power consumption
P , proving that the algorithm can dynamically adapt the amount of resources used by
the runtime to changes in the arrival rate, optimising its power consumption.

Eventually, we evaluate one of the main advantages of our algorithm with respect
to other existing online algorithms. In the bottom part of the figure, we show the be-
haviour of NORNIR when the distinction between the two types of dynamicity (i.e.
phase change and arrival rate change) is not made, as common in many existing ap-
proaches [Mishra et al. 2015], [Shafik et al. 2015], [Marathe et al. 2015]. To test this
case, we artificially disable the arrival rate change detection in the algorithm. In such
case, each change in the arrival rate would appear as a phase change, thus triggering
the computation of new prediction models. As we can see from the figure, this causes
the system to be very unstable 5394 reconfigurations against the 75 performed by
NORNIR, with a significant impact on the performance (-25.46%).

6. CONCLUSIONS AND FUTURE WORK
In this work we proposed NORNIR, a new algorithm for self-adaptation of parallel ap-
plications able to find a close to optimal [CORES, FREQUENCY, THREADS PLACEMENT]
configuration that satisfies a user bound on performance and/or on power consump-
tion. The algorithm does not leverage on any knowledge about previous applications
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executions, instead, it tries to derive on-the-fly prediction models for the power and the
performance of the application. These models are used to select the best configuration
satisfying user’s requirements. The algorithm keeps monitoring the runtime to react
either to changes in the input data interarrival rate and to intrinsic changes in the ap-
plication behaviour. We also described a possible implementation of the algorithm over
the FASTFLOW runtime system. We validated the quality of our proposal both with the
help of simulations and with real executions over different applications. Moreover, we
compared the results we obtained with those achieved by state of the art solutions,
assessing the quality of our algorithm.

As a future work, we planned to extend the proposed algorithm to consider multiple
applications, each one with its own requirement. This requires several challenges to
be solved. Indeed, the algorithm currently assumes to have a complete control of the
underlying machine (e.g. for frequency scaling and threads placement). Coordinating
frequency management between different applications is an open problem and only few
solutions exist [Ribic and Liu 2016]. In addition to that, calibration phases of different
applications may interfere with each other, i.e. the calibration of an external applica-
tion must be distinguished from phase changes and from workload pressure fluctua-
tions. Moreover, multiple applications may have different requirements, incompatible
with each other (e.g. one application may want to maximise performance while the
other may want to minimise power consumption). Eventually, consider a system where
only an application A is running. After its calibration, it derives a performance model
MA and selects an optimal configuration KA. When an application B come into the sys-
tem, it starts its calibration and obtain a performance model MB . However, the model
MA was computed when A was the only application running. Accordingly, now that B
is running, A needs to compute a new performance model M ′A. After that this model
has been computed, A selects a new optimal configuration K ′A. However, application B
computed its model MB when the application A was in configuration KA. Accordingly,
B needs to compute a new model M ′B . This process may not converge or may need sev-
eral iterations, especially when multiple applications with different requirements are
present on the system. A subset of these challenges have been smartly solved in some
existing works (e.g. application interference in [Delimitrou and Kozyrakis 2014], [De-
limitrou and Kozyrakis 2013]). On the other hand, other important problems related
to power constraints and shared frequency management have not been yet considered
(to the best of our knowledge) in the context of multiple running applications.
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