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Abstract—Current architectures provide many control knobs
for the reduction of power consumption of applications, like re-
ducing the number of used cores or scaling down their frequency.
However, choosing the right values for these knobs in order to
satisfy requirements on performance and/or power consumption
is a complex task and trying all the possible combinations of
these values is an unfeasible solution since it would require too
much time. For this reasons, there is the need for techniques
that allow an accurate estimation of the performance and power
consumption of an application when a specific configuration of
the control knobs values is used. Usually, this is done by executing
the application with different configurations and by using these
information to predict its behaviour when the values of the knobs
are changed. However, since this is a time consuming process, we
would like to execute the application in the fewest number of
configurations possible.

In this work, we consider as control knobs the number of
cores used by the application and the frequency of these cores. We
show that on most PARSEC benchmark programs, by executing
the application in 1% of the total possible configurations and by
applying a multiple linear regression model we are able to achieve
an average accuracy of 96% in predicting its execution time and
power consumption in all the other possible knobs combinations.

Keywords: performance prediction, power consumption pre-
diction, concurrency throttling, DVFS, linear regression.

I. INTRODUCTION

Power consumption is becoming a key factor in designing
applications and computing systems. This is motivated both
by economical and environmental reasons. In fact, the energy
cost is quickly going to overcome the cost of the physical
system itself [1]. Moreover, high power consumption rises
the temperature of the system, increasing the probability of
failure of the physical components and requiring advanced heat
management systems, that increase the cost by one dollar for
each dollar spent in electricity [2]. On the other hand, energy
consumption has a considerable impact on the environment,
since during 2010 the CO2 emissions of US’ data centers were
on par with those of an entire country like Argentina [3].

Existing power aware solutions often operate on control
knobs to reduce the amount of resources used by an appli-
cation, thus decreasing its power consumption. Usually this
implies reducing the number of cores used by the application
(concurrency throttling) or scaling down the frequency of these
cores (Dynamic Voltage and Frequency Scaling (DVFS)). a
specific combination of the knobs values is often referred as
a “configuration”. However, decreasing the resources used by
the application may produce a degradation in the performances.
Accordingly, to have the desired trade-off, it’s usually possible

to require a maximum allowed power consumption and/or a
minimum level of performance. To satisfy such requirements,
we should be able to answer to the following questions:

• Which is the least power consuming configuration that
allows the application to finish before a specified time
deadline?

• Which is the most performing configuration that con-
sumes less power than a specified threshold?

To answer these questions, we need to know both the
performance and the power consumption of the application in
all the possible configurations. One solution is to execute the
application with a specific configuration and to stop it after we
obtained the values for power consumption and performances1.
If we repeat this process for all the possible configurations,
we can then choose the one that satisfies the requirements.
However, on current machines this would be too costly since
we have an high number of possible configurations and in
many cases the search process could last longer than the
execution itself. For example, the machine used to validate
this work has 24 cores and 13 possible frequency levels, for
a total of 312 possible configurations to explore. If we should
also consider other possible control knobs, this number would
rapidly increase.

A more efficient approach would be to execute the ap-
plication only in few configurations and to use the collected
information to predict the performance and power consumption
of the application in all the other knobs combinations. In some
of these systems [4], [5] the exploration phase is done while
the application is running, without restarting the application
between configurations changes. To be precise, they start the
execution in an arbitrary configuration and, while running,
they change the number of threads of the application and the
frequency of the cores. This process continues until they collect
enough information to have a sufficiently high prediction
accuracy. After this phase, they use the obtained model to
execute the remaining part of the computation in the best
configuration.

For these reasons, we need prediction algorithms which
require to explore the smallest possible number of configura-
tions. Moreover, the algorithm should be simple enough to be

1For the sake of clearness, in this work we consider the case in which
the algorithm collects data about execution time. However, since we stop the
application before it finishes, we can alternatively collect the data about the
bandwidth, defined as the number of elements processed per time interval.
Since the bandwidth is the inverse of the execution time, the algorithm would
still work in the same way.



applied at runtime with minimum impact on the application
latency.

Our prediction algorithm is targeted towards such kind
of systems, where the duration of the exploration phase is a
critical factor. The main contributions of this paper are:

1) The proposal of a strategy for low latency and high
accuracy predictions of the execution time and power
consumption of all the possible configurations of
a parallel application. By exploring just few con-
figurations, we are able to accurately predict the
behaviour of the application in all the non explored
configurations.

2) Differently from many existing solutions that collect
information using specific hardware counters (which
may not be available on all architectures), our solu-
tion only needs the execution time of the application
and its power consumption.

We validate the proposed algorithm on PARSEC [6] ap-
plications. PARSEC is a well known benchmark containing
applications from many different domains and with different
characteristics in terms of parallelization model, working set
size and data sharing and exchange between computational
nodes, thus allowing the assessment of our approach over a
wide range of real world scenarios. Moreover we propose and
compare different strategies to select the configurations to be
explored, in order to minimise the time required to obtain the
model.

The paper is structured as follows. In Section II we analyse
some of the existing works in this area. Then, in Section III we
will describe our algorithm proposal. The achieved results will
be later shown in Section IV. Eventually, in Section V we will
draw conclusions and outline some possible future directions
for our work.

II. RELATED WORK

In this section we analyse some of the works addressing
the estimation of the performances and power consumption of
an application in all its possible configurations.

Li and Martinez [4] propose a system that, at runtime,
tries different configurations to find the one that satisfies
the given requirements in terms of performances and power
consumption. Since an exhaustive search would be too costly,
they cut down the search space by using some heuristics.
However, even though the search space is reduced, the cost
significantly increases with the number of possible configura-
tions. Moreover, the applications runs are only simulated and
the values for execution time and power consumption may be
different from those obtained in real executions.

In [5] the authors propose a method to determine the
optimal degree of parallelism for loop based computations,
by executing some iterations of the loop to collect data to
train the algorithm. After this phase, the algorithm predicts
the execution time of the application in all the configurations
and chooses the fastest one to execute the remaining iterations
of the loop. Although they succeed in finding the fastest con-
figuration, their solution lacks of generality, since it is limited
to loop based applications, with synchronisations performed
only at the end of each parallel section. Moreover, DVFS is not

considered and the power consumption of the configurations
is not explicitly estimated. Differently from our work, this
algorithm is only executed on traces collected from simulated
executions.

Pusukuri et al. propose in [7] a method to estimate the
number of threads such that the shortest execution time is
obtained. For a specific application and input, they run the
application on that input for a short period of time and with
different configurations, collecting information for each exe-
cution by using hardware counters. Eventually, when the best
configuration is found, they start the application from scratch.
Nevertheless, they do not consider the possibility to change
the frequencies of the cores. Moreover, power consumption is
not investigated since the focus of this work is on finding the
most performing solution.

These approaches are close to the one we propose in this
work. However, power consumption is often not explicitly
modelled thus not allowing the tuning of performance-power
trade-offs. Moreover, some of them need to collect data from
hardware counters during the exploration phase, while our
approach only requires the execution time of the application
and its power consumption. In addition to this, our algorithm
have been extensively tested on a wide range of applications
executed on real hardware, while in many existing works the
executions have only been simulated.

Other works [8], [9] present more general models that, after
exploring different configurations of different applications,
allow the prediction even for applications not analysed during
the exploration phase. However, this is usually possible thanks
to more complicated models that take into account many
different factors, requiring long training phases and thus not
usable at runtime. Our algorithm is orthogonal to these since
it is much simpler and faster in deriving a model, even if it
is only able to predict the behaviour of the same application
analysed during the exploration phase. Moreover, our approach
is particularly suited for highly dynamic runtime supports
[10] since, due to frequent changes in the workload intensity,
there is the need to continuously recompute the model with
minimum impact on the application performances.

III. ALGORITHM

In this Section, we will show the approach we used to
predict the performance and the power consumption of an
application in all its possible configurations.

A. Multiple linear regression

In multiple linear regression [11], we model the rela-
tionship between two or more independent variables (called
predictors) and a dependent variable (called response) by
fitting a linear equation to observed data. In our case, the
predictors are the number of cores used by the application and
their frequency, while the responses are the execution time or
the power consumption.

Suppose we made a set of n observations to ob-
tain the values of the responses y1, y2, . . . , yn. Let xi =
xi,1, xi,2, . . . , xi,p denote the p predictors for the observation
i. Then we have:



yi = β0 + β1xi,1 + · · ·+ βpxi,p + εi (1)

where βi is a regression coefficient and εi is a term
representing a random error due to measurement error or
fluctuations in the results.

By fitting a regression model to observations, we determine
the β coefficients, thus enabling the prediction of the responses
for the unobserved predictors. To fit the model, we use the
least squares method, minimising the sum of the squares of
the residuals, where a residual is the difference between the
real value of the dependent variable and the value predicted
by the model.

B. Performance and power consumption modelling

By using linear regression, we will perform an interpolation
of performances and power consumption values obtained in
few configurations to infer an analytical model which allows
us to predict the behaviour of all the other configurations. To
achieve this goal, we first need to express execution time and
power consumption in a form similar to the one of Equation 1,
i.e. as a linear combination of the number of cores2 and their
frequency.

Concerning the performances we can use the Amdahl’s law
[12]3 , defined as:

T (t) = T (1)

(
B +

(1−B)

t

)
(2)

where t is the number of threads, T (t) is the execution
time with t threads and B is the percentage of the application
that is strictly sequential.

We can generalise this equation to also consider the effects
of frequency scaling on the execution time. First of all, we
assume that we can’t change the frequency of the cores indi-
vidually but we are forced to change them simultaneously for
all the cores on a CPU. This is a reasonable assumption since
this is how DVFS currently work on most existing architectures
[13].

When the frequency is increased, the execution time with
one thread proportionally decrease [14]. Accordingly, if f is
the frequency and fmin is the minimum available frequency,
then we have:

2It’s worth noticing that in this work we only consider scenarios with at
most one thread running on each core. Accordingly, to reduce the number of
cores used by the application we need to reduce the number of threads it uses.

3We decided to use a very general model since we do not want to make
assumption about the structure of the application. However, for structured
applications models that are more detailed could be used.
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f
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(3)

For example, if we fix the number of threads and we set
a frequency f = 2fmin both serial and parallel time will be
halved.

Concerning the power consumption of a CPU, it can be
modelled as in [15], [16], [17]:

P (t, f, v) = vIleak + αcv2ft (4)

where v is the voltage, Ileak is the leakage current, α is
the activity factor and c is the capacitance. For our purposes,
we can consider α, c and Ileak as constants.

If we consider a system with multiple CPUs, this formula
applies separately for each of them. Let k and k be the number
of active and inactive CPUs respectively. Then, for a given
application we have4 :

P (t, f, v, k, k) = k(vIleak + αcv2ft) + kvIleak =

= kvIleak + kvIleak + kαcv2ft
(5)

However, we would like to remove the model dependence
from v, k and k. Concerning v, it is strictly correlated to the
frequency, since by increasing the frequency we raise the oper-
ating voltage. The relationship between voltage and frequency
may be computed once and for all, programmatically or by
using the values provided by the CPU vendor. Consequently,
we can use a tabular function V (f) to get the voltage value
associated to a specific frequency level f .

To get the number of used CPUs, we assume a linear
mapping of the threads over the cores. In this way, we start
using an additional CPU only if we do not have any available
core on the current one. Let k̃ be the number of cores available
for each CPU and K be the number of available CPUs. Then
we have

k =

⌈
t

k̃

⌉
k = K − k

(6)

We can then rewrite Equation 5 as:

4In our experiments we considered a different voltage for active and inactive
CPUs. However, to simplify the exposition, we only show the formula with a
single voltage. The model can be easily modified to consider situations with
two different voltages.
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At this point, we can use multiple linear regression to
obtain the βi values in Equations 3 and 7. It’s worth noticing
that the βi values include the constants of the application that
we do not know a priori, like the activity factor α or the serial
fraction B. Basically, by using linear regression to derive these
values, we are able to complete our analytical model.

Eventually, we can use the obtained equations to predict the
execution time and the power consumption of the application
in all the possible [t, f] configurations.

IV. RESULTS

In this Section, we will show the results we obtained by
applying our prediction algorithm. Moreover, we will evaluate
different alternative solutions for the choice of the configura-
tions to be used as input for the linear regression model.

A. Testing methodology

One of the targets of this work is to assess the prediction
accuracy of the proposed algorithm. Accordingly, we need to
compare the values obtained by the prediction algorithm with
those obtained in a real execution. For this reason, we first need
to run the application in all the possible [Threads, Frequency]
configurations, collecting the real execution times and power
consumptions.

To assess the accuracy of the prediction algorithm we used
the holdout method, described as follows:

1) We select a certain percentage of the total config-
urations as input for the multiple linear regression
algorithm, thus obtaining a model of the execution
time and power consumption.

2) After that, we use this model to predict the behaviour
of the application in all the configurations not selected
at the previous step.

3) Eventually, we compute the error of the predic-
tions by using the Mean Absolute Percentage Error
(MAPE), defined as:

ε =
1

p

p∑
i=1

∣∣∣∣Ai − Pi

Pi

∣∣∣∣ (8)

where p is the number of configurations, Ai is the real
execution time (or power consumption) and Pi is the
predicted execution time (or power consumption).

The average accuracy is then computed as 100− ε.

B. Test environment

To validate our approach, we used the applications provided
by PARSEC. PARSEC [6] is a well-known benchmark suite of
parallel applications, diverse in terms of: application domain,
programming model (pipeline, data-parallel and unstructured),
granularity, working set size, data sharing and data exchange
patterns. This heterogeneity allowed us to validate our ap-
proach on a wide range of real world applications.

Among the different input sizes provided by PARSEC, we
chosen the native one, in order to have a real world behaviour
of the applications. We executed our algorithm on all the
applications provided except X264, which we were not able
to run on our system. For all the benchmarks we executed the
pthread version, except for FREQMINE which only provides
the OpenMP version.

The number of threads to activate have been selected with
the -n t parameter provided by the parsecmgmt tool. This
parameter however ensures that at least t threads will be
activated. In most cases, only one or two threads more will
be created, for scheduling and collecting data from the other
threads [7]. However their impact on the performances and
power consumption is negligible and they can be executed on
a core together with a working thread. For this reason, we
consider the number of used cores equal to that specified by
the -n parameter. Particular cases are those of FERRET and
DEDUP applications, which respectively activate (4 × t) + 3
and (3 × t) + 2 threads. In these cases, we also consider
the additional threads since they are not scheduling threads
but they actively contribute to the processing of the input
data. Moreover, some benchmarks only allow some values
for the -n parameter. To be precise, FACESIM only allows
1, 2, 3, 4, 6, 8, 16 values, while FLUIDANIMATE only allows
1, 2, 4, 8, 16 values.

All experiments were conducted on an Intel workstation
with 2 Xeon E5-2695 @2.40GHz CPUs, each with 12 2-
way hyperthreaded cores, running with Linux x86 64. This
machine has 13 possible frequency levels: from 1.2GHz to
2.4GHz with 0.1GHz steps. Since in these tests we do not
use hyperthreading and we perform a mapping of at most one
thread for each core, we will have at most 24 threads running
on the machine, leading to 312 possible configurations (13
frequency steps times 24 threads). To change the frequency of
the cores, we used the cpupower utilities.

To get the power consumption, we used the Running
Average Power Limit (RAPL) feature [18], introduced by Intel
in its newer architectures. It provides sensors for measuring
the power consumption of an entire CPU package, of the
set of cores only, of some uncore devices or of the memory
controller. In our case, we considered the power consumption
of the set of cores on the CPUs. However, our approach would
also work by considering the power consumption of the entire
CPU, since they often differ only by a constant factor. It’s
important to notice that our approach is not bound to the power
reading mechanisms provided by Intel and any other method
to obtain the power consumption could be used too.

In all the presented results, we only considered the time
spent in the so-called region of interest (ROI), i.e. the time



spent in the parallel sections of the applications, without
considering initialisation and cleanup phases. This approach
is commonly used [9], [7] to avoid distortions of the measure-
ments. The same approach has also been adopted for power
consumption results.

To better understand the variability in the behaviour of the
applications of the benchmark, in Figures 1 and 2 we show
their scalabilities with respect to the number of cores as well
as their power consumption. As we can see, they cover a
wide range of situations, with maximum scalability ranging
from 11 to 22 and maximum power consumption ranging from
39 to 106 Watts. Concerning the scalability with respect to
the frequency, we do not show the full results here due to
space constraints. However, they also cover a wide spectrum
of situation, with a maximum scalability ranging from 1.5 to
2.

This variability allowed us to assess our algorithm on a
large set of real world applications.
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Fig. 1. Scalability of PARSEC applications with respect to the parallelism
degree. Frequency is fixed to 2.4GHz.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

W
a

tt
s

Parallelism degree

Blackscholes
Bodytrack

Canneal
Dedup

Facesim
Ferret

Fluidanimate
Freqmine
Raytrace

Streamcluster
Swaptions

Vips
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C. Choice of the configurations to be explored

One of the first problems to address, is how to choose the
configurations to interpolate to obtain our models.

Firstly, we can imagine our configurations as points on a
plane, where on the x-axis we have the number of cores and
on the y-axis the frequencies.

An important observation is that if two points are close
to each other, then we are collecting data about two con-
figurations which are very similar, i.e. they have a similar

number of threads or a similar frequency. In this situation, most
likely the second point will not add any significant information.
Consequently, the more evenly distributed the points are, the
more information they provide to the algorithm, thus allowing
an higher accuracy.

For this reason, we decide which configurations to choose
by using low discrepancy generators [19]. Such generators
cover the domain more evenly with respect to pseudo-random
generators, as shown in Figure 3.

Fig. 3. Comparison between the points generated by a pseudorandom
generator (top) and those generated by a low discrepancy generator (down).
From left to right, we have 10, 100, 1000 or 10000 generated points.

Moreover, they also have an advantage over deterministic
methods since the latter give good equidistribution properties
only when the number of points is known a priori, while in
low discrepancy generators the equidistribution improves as
more points are added. This is a frequent situation since we
may want to add points to the interpolation process until the
accuracy doesn’t get higher than a specified threshold.

In this work, in order to find the most suited generator
for our purpose, we compare the pseudorandom generator5

with the Niederreiter base 2 [20], Sobol [21], Halton [22] and
Reverse Halton [23] low discrepancy generators.

Since the points generated by the pseudorandom generator
may change between different executions, thus leading to
different average accuracies, we averaged the average accuracy
over 200 runs, computing also the 95% confidence interval.
On the other hand, this was not necessary for low discrepancy
generators since for a given number of points their behaviour
is deterministic.

The first result we obtained from the comparison is that,
when a sufficient number of points is used (> 20), no
significant differences in accuracy are present between the
different generators. This is because with such a number of
points, even if they are not truly uniformly distributed, the
algorithm has enough information to correctly predict the data.

In Figure 4 we show the comparison of the accuracies when
we interpolate 4 configurations to try to predict the other 308
configurations.

As we can see from the results, Niederreiter, Halton and
Reverse Halton generators always perform better with respect
to the pseudorandom one. The best generator among those
proposed is Halton, with an average accuracy improvement

5To be precise, a multiply-with-carry generator.
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Fig. 4. Comparison of the prediction accuracy between pseudorandom and
low discrepancy generators. 4 configurations have been used to obtain the
model. For pseudorandom generator, we averaged the results over 200 runs.
Error bars represent the 95% confidence interval.

of 26.61% in predicting power consumption and 12.74% in
predicting the execution time. The maximum improvement
obtained by using this generator is 53.78% for power con-
sumption and 24.43% for execution time.

On the contrary, Sobol performs significantly worst in
almost all the cases. This effect is caused by the generation of
few points and it disappears as the number of explored points
increases.

Increasing the number of configurations, the difference
between the generators decreases, as shown in Figure 5 for
the power consumption prediction accuracy. From the results
we can see that to achieve an accuracy of ∼ 95% the
Pseudorandom generator needs ∼ 20 points, while Halton only
requires 4 points. If we assume to spend a constant amount
of time in each configuration, by using the Halton generator
we can achieve a fivefold reduction in the time required to
obtain the model with respect to the Pseudorandom generator.
For the completion time we got similar results, even though
the advantage of the Halton generator over the Pseudorandom
one is not so emphatic.
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TABLE I. AVERAGE ACCURACY OF EXECUTION TIME AND POWER
CONSUMPTION PREDICTIONS. BETWEEN BRACKETS, THE STANDARD

DEVIATION FROM THE MEAN.

APPLICATION
AVERAGE EXECUTION

TIME ACCURACY
(STANDARD DEVIATION)

AVERAGE POWER
CONSUMPTION ACCURACY
(STANDARD DEVIATION)

BLACKSCHOLES 98.53 (1.23) 98.17 (1.51)
BODYTRACK 99.14 (0.71) 95.04 (3.95)

CANNEAL 93.24 (4.99) 98.02 (1.57)
DEDUP 87.66 (11.81) 96.33 (3.76)

FACESIM 98.86 (0.95) 97.78 (2.69)
FERRET 99.44 (0.42) 96.47 (3.66)

FLUIDANIMATE 98.57 (1.21) 96.07 (3.00)
FREQMINE 96.93 (2.69) 91.73 (8.73)
RAYTRACE 98.18 (1.85) 98.45 (1.26)

STREAMCLUSTER 89.65 (10.35) 93.85 (5.69)
SWAPTIONS 96.75 (3.38) 96.66 (3.66)

VIPS 99.33 (0.60) 97.49 (2.25)

AVERAGE 96.35 (3.34) 96.33 (3.47)

In Table I we show the average accuracy and the stan-
dard deviation for execution time and power consumption
predictions, obtained by using the Halton generator and 4
configurations. For the execution time prediction, we achieve a
maximum of 99% for of BODYTRACK, FERRET and VIPS. For
power consumption prediction, we get a maximum accuracy of
98% for BLACKSCHOLES, CANNEAL and RAYTRACE. In both
cases, we achieve an average accuracy of 96%. It’s important to
notice that there is no strict relationship between the linearity
of the scalability and the accuracy of the model. For example,
by looking at Figure 1 we can observe that BODYTRACK
exhibits a worst scalability than CANNEAL, while achieving
a better prediction accuracy.

D. Search of the best configurations

In this section, we would like to understand if the method
succeeds in finding the most performing configuration under
a power budget or the least consuming configuration under
performance constraints. Indeed, albeit the accuracy of our
method is sufficiently high, we may still not succeed in
finding these configurations. This is because, even with a small
percentage of error, we may still miss the best configuration.

We define the following types of optimal configurations,
corresponding to different types of trade-offs between power
consumption and execution time:

• minPower(τ) This is the configuration that min-
imises the power consumption while terminating in
a time less than τ .

• minTime(π) This is the configuration that minimises
the execution time while not consuming more than a
power π.

Concerning minPower(τ), we tested it under different
time requirements. Let Tmin and Tmax be respectively the
minimum and the maximum execution time of an application.
Then, we set:

τ = Tmin + ((Tmax − Tmin) ∗ i) (9)

where i varies between 0.1 and 1, with steps of length
0.1. For example, if an application has a minimum execution



TABLE II. COMPARISON BETWEEN OUR ALGORITHM AND THE IDEAL ONE IN FINDING THE minPower(τ) CONFIGURATION. THE FIRST COLUMN
REPRESENTS THE i VALUE OF EQUATION 9. FOR EACH TEST WE INDICATE WHETHER IT IS A Miss, A Success OR A Loss. FOR LOSSES, WE REPORT THEIR

VALUES.

i BLACKSC. BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUIDAN. FREQMINE RAYTRACE STREAMCL. SWAPT. VIPS
0.1 SUCC. 7.23 SUCC. MISS 6.08 SUCC. 5.78 12.22 SUCC. 5.73 SUCC. SUCC.
0.2 SUCC. SUCC. 4.76 MISS 1.54 SUCC. 4.43 SUCC. SUCC. 4.47 SUCC. SUCC.
0.3 2.27 SUCC. SUCC. MISS 1.1 SUCC. SUCC. SUCC. SUCC. SUCC. MISS SUCC.
0.4 SUCC. SUCC. SUCC. MISS SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC.
0.5 SUCC. 2.34 0.91 3.45 SUCC. SUCC. SUCC. SUCC. SUCC. 5.05 SUCC. SUCC.
0.6 SUCC. SUCC. SUCC. 3.45 SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC.
0.7 SUCC. SUCC. SUCC. 3.45 SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC.
0.8 SUCC. SUCC. SUCC. MISS SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC. SUCC.
0.9 SUCC. SUCC. SUCC. MISS SUCC. SUCC. SUCC. MISS SUCC. 1.41 SUCC. MISS
1 SUCC. 4.34 7.19 SUCC. SUCC. SUCC. 2.76 11.83 3.52 1.41 3.89 SUCC.

TABLE III. COMPARISON BETWEEN OUR ALGORITHM AND THE IDEAL ONE IN FINDING THE minTime(π) CONFIGURATION. THE FIRST COLUMN
REPRESENTS THE i VALUE OF EQUATION 9. FOR EACH TEST WE INDICATE WHETHER IT IS A Miss, A Success OR A Loss. FOR LOSSES, WE REPORT THEIR

VALUES.

i BLACKSC. BODYTRACK CANNEAL DEDUP FACESIM FERRET FLUIDAN. FREQMINE RAYTRACE STREAMCL. SWAPT. VIPS
0.1 MISS MISS MISS SUCC. SUCC. SUCC. 6.98 MISS MISS MISS SUCC. SUCC.
0.2 MISS MISS 0.82 MISS SUCC. SUCC. SUCC. MISS SUCC. MISS SUCC. SUCC.
0.3 SUCC. MISS SUCC. MISS MISS 8.23 21.67 MISS SUCC. 10.63 SUCC. SUCC.
0.4 SUCC. MISS 6.47 71.75 SUCC. SUCC. 11.21 MISS SUCC. 7.38 SUCC. SUCC.
0.5 MISS 2.45 SUCC. 60.63 SUCC. SUCC. 12.65 10.74 SUCC. 11.31 8.78 4.14
0.6 3.99 3.54 4.93 62.15 SUCC. 5.8 6.06 11.34 SUCC. 9.2 7.52 6.25
0.7 SUCC. 6.03 6.96 66.7 SUCC. 5.53 5.32 11.55 4.42 10.52 6.48 8.79
0.8 SUCC. 5.65 SUCC. 68.74 SUCC. 4.65 4.11 11.76 MISS 15.89 11.83 6.82
0.9 MISS 8.21 1.64 21.4 SUCC. 4.75 SUCC. 17.29 6.85 13.18 3.85 6.73
1 4.01 11.41 3.93 10.39 SUCC. 4.34 SUCC. 16.31 SUCC. 8.59 7.83 9.86

time of 20 and a maximum of 220, then we will com-
pute minPower(40),minPower(60), . . . ,minPower(220).
Basically, we are slicing the range of execution times in equal
intervals. By doing so, we are able to test a wide range of
situations and to cover the entire spectrum of execution times,
avoiding biases due to specific choices of τ . A similar approach
has also been adopted in finding minTime(π) configurations.

In the following tests, we will compare the results obtained
by our algorithm with those obtained through an ideal and
optimal algorithm. The ideal algorithm has the knowledge of
all the power consumption and execution times values in all the
312 possible configurations, so it is able to always choose the
optimal configuration. On the other hand, our algorithm only
knows the values about 4 configurations and try to predict all
the other values. The configurations have been produced with
the Halton generator.

For each test, three different situations may happen:

1) The algorithm chooses a solution that according to
the predictions satisfies the requirements but actually
it doesn’t. We will denote this situation as a MISS.
For example, this happens when we want to find the
minPower(20) configuration but the algorithm find a
configuration with an execution time greater than 20.

2) The algorithm succeeds in finding a configuration
that satisfies the requirement. However, the found
configuration is worst than the one found by the
ideal algorithm. For example, consider the scenario
where we need to find the minTime(40) configuration.
In this case, our algorithm will find a configuration
that satisfies the required power consumption bound
but has an execution time higher than that of the
configuration found by the ideal algorithm. We will
call this situation as a LOSS and we will indicate in
our results the percentage of this loss. For example,
for minTime(π) configurations the loss will be

(FoundTime−IdealT ime)
IdealT ime ∗100, where FoundT ime is

the execution time of the configuration found by our
algorithm while IdealT ime is the execution time of
the optimal solution.

3) Our algorithm finds the ideal configuration. We will
call this situation a SUCCESS.

In Table II, we show the accuracy of our algorithm with
respect to the ideal one when searching for minPower(τ)
configurations. The first column of the table represents the i
value of equation 9. We successfully satisfied the requirements
in 92.5% of all the tests. In 71.66% of the cases we found the
optimal configuration (SUCCESS), while in 20.83% of tests
we satisfied the requirements but we didn’t found a solution
as good as the one found by the ideal algorithm (LOSS).
However, those solutions were in average only 5.3% worst than
the corresponding optimal solutions. In the remaining 7.5% of
the cases, we were not able to satisfy the requirements and
the algorithm chosen a configuration with an execution time
greater than τ (MISS).

Similarly, in Table III, we show the accuracy of our
algorithm in selecting the minTime(π) configuration under
different π constraints. We found a configuration that respected
the requirements in 83.2% of the cases. In 31.6% of the cases
we found the same solution found by the ideal algorithm
(SUCCESS). In 51.6% of the cases our solution was slightly
worse than the optimal one, with an average degradation of
15.46% (LOSS). The remaining 16.6% of cases were those
in which we chosen a solution that according to our predic-
tion satisfied the requirement but actually it wasn’t (MISS).
Although we achieved a good average accuracy, for some
applications the results are quite below the average (e.g. for
DEDUP). This is caused by the fluctuations and outliers in
its scalability behaviour (Figure 1), which let the performance
much more difficult to predict. However, this happen only in
few cases and to be solved it would require more complex



prediction models, which are outside the scope of this work.

V. CONCLUSIONS AND FUTURE WORK

In this work we proposed a methodology for the prediction
of the performance and power consumption of an application
under different control knobs combinations. By exploring few
[Threads, Frequency] configurations, we were able to predict
its behaviour in all the other configurations. To do that we used
a multiple linear regression model. This model interpolates
the collected data to infer an analytical model that will then
be used to perform our predictions. Differently from many
existing solutions based on hardware counters readings, we
only needed information about execution time and power
consumption, thus making our approach more portable. In
order to minimise the amount of configurations needed by
the interpolation process, we compared different selection
strategies. We shown that by picking equidistributed points
we can achieve better accuracies compared to the case of a
pseudorandom selection of the points. By using this intuition,
we have been able to achieve an average prediction accuracy of
96% over the PARSEC applications, by interpolating only the
∼ 1% of the possible configurations. Eventually, we analysed
the accuracy of our algorithm in finding the best configurations
for trade-offs between power consumption and performances,
comparing it with an ideal and optimal algorithm.

As a future work, we would like to extend this approach
by considering both hyperthreading and different mappings
of the threads on the cores. Moreover, we would like to
integrate this prediction algorithm into highly dynamic runtime
supports since, thanks to its low overhead, it could be used to
reevaluate the optimal configuration with minimum impact on
the application performances.
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