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Abstract—Determining the right amount of resources needed
for a given computation is a critical problem. In many cases,
computing systems are configured to use an amount of resources
to manage high load peaks even though this cause energy waste
when the resources are not fully utilised. To avoid this problem,
adaptive approaches are used to dynamically increase/decrease
computational resources depending on the real needs. A different
approach based on Dynamic Voltage and Frequency Scaling
(DVFS) is emerging as a possible alternative solution to reduce
energy consumption of idle CPUs by lowering their frequencies.
In this work, we propose to tackle the problem in stream parallel
computations by using both the classic adaptivity concepts and
the possibility provided by modern CPUs to dynamically change
their frequency. We validate our approach showing a real network
application that performs Deep Packet Inspection over network
traffic. We are able to manage bandwidth changing over time,
guaranteeing minimal packet loss during reconfiguration and
minimal energy consumption.

Keywords: parallel design patterns, energy efficiency, dynamic
adaptation, DVFS

I. INTRODUCTION

In the latest years, increasing attention has been paid
on the creation of energy efficient computing system. This
interest is motivated both by environmental and economical
reasons. In fact has been estimated that, during 2010, the
data centers in the US consumed more CO2 than an entire
country like Argentina or Netherlands [1] (and close to the
CO2 consumed by the entire airline industry). Furthermore,
energy consumption has also a consistent economical impact.
In 2010, for example, the energy consumed in US by data
centers reached the 3% of the overall energy production, and
this power demand is estimated rapidly growing 10% − 12%
a year [1], [2]. Consequently, energy cost in the near future
could easily overtake the cost of the physical system itself.
In addition to this, high energy consumption causes high
temperature in the system, thus requiring more energy for
advanced heat management and cooling systems. This often
means that for every dollar spent on electricity, an additional
dollar is required for cooling [3].

Moreover, energy efficiency is also needed on smaller
scale, for example by mobile systems users where power
consumption is one of the main concern. Finding efficient
power management methods could lead to longer battery life
and better user experience.

According to [3], [4], the average utilisation of many
systems is usually around 10% − 50%. This opens many
possibilities for energy saving by increasing the average util-
isation of these systems. This solution is also supported by

manufacturers, which provide new architectural mechanisms
to control and adapt the architecture to the real needs, for
example by scaling the frequency of the CPUs or by turning
off cores, cache or RAM modules, allowing thus to use just
the resources really needed.

The main contributions of this paper are:

• A reconfiguration strategy proposal for stream parallel
computations. The strategy exploits both the possibil-
ity to add or remove computation resources at run-
time and the possibility to dynamically change their
running frequency.

• A model to always choose the best solution in terms
of consumed energy.

• The validation of the strategy on top of a frame-
work for Deep Packet Inspection, thus applying the
approach over a class of applications characterised by
highly varying rates, showing that this approach has a
negligible performance impact.

This paper is structured as follows. In Sec. II we first
describe the reconfiguration strategy proposed in this work,
then, in Sec. III we outline the framework we modified by
adding the automatic reconfiguration strategy. In Sec. IV the
results obtained running a real network based application are
shown. Eventually, in Sec. VI we draw some conclusions
proposing also some possible feature directions.

II. ENERGY DRIVEN ADAPTIVITY

In this section, we will explain the approach we used to
decide when and how to adapt the system.

A. Stream parallel computations

In this work we concentrate mainly on computations work-
ing on streams of data. A stream can be informally defined
as a sequence (possibly infinite) of data items to compute,
all of them having the same type. A streaming application
may be seen as a graph (or workflow) of computing modules
(sequential or parallels) whose arcs connecting them bring
streams of data of different types. The typical requirements
of such a complex streaming application is to guarantee a
given Quality of Service imposed by the application context.
In a nutshell, that means that the modules of the workflow
describing the application have to be able to sustain a given
throughput.



Stream parallel patterns are those natively operating on
streams, notably pipeline and task-farm. Although the ap-
proach shown in this work focuses only on task-farm based
computations, it can be applied in a similar way to the pipeline
pattern case as well.

The pipeline is typically used to model computations
expressed in stages. Its parallel semantics ensures that all
stages will be executed in parallel on different input data.

The task-farm (sometimes also called master-worker or
simply farm) is a stream parallel paradigm based on the
replication of a purely functional computation (f ). Its parallel
semantics ensures that it will process tasks such that the
single task latency is close to the time needed to compute
the function f sequentially, while the throughput (only under
certain conditions) is close to f 1

N where N is the number of
parallel agents used to execute the farm (called workers). The
concurrent scheme of a farm is composed of three distinct
parts: the emitter, the pool of workers and the collector.
The emitter gets farm’s input tasks and distributes them to
workers using a given scheduling strategy (round-robin, auto-
scheduling, user-defined). The collector collects tasks from
workers and sends them to the farm’s output stream. We define
the current configuration of a farm as a couple < ω, π >
where ω is the number of workers and π is the frequency of
the cores on which the workers are running. We then define
a reconfiguration as a change of the resources from < ω, π >
to a different generic configuration < ω, π >.

B. Detection

To check if the system is under-utilised or over-utilised,
at regular time intervals, we compute the average utilisation
factor of the system defined as:

ρ =
TS
TA

where TS is the average service time of the system (in
isolation) and TA is the average interarrival time of the request
to the system. The system will be able to manage all the
requests only if ρ < 1.

To have a system which is neither over-utilised nor under-
utilised we need to keep ρ as much close as possible to 1.
Therefore, we want to keep ρ between two bounds ρmin and
ρmax, where ρmax is close to 1. The rationale is that, when ρ
goes below ρmin the system is under-utilised and we could
decrease the resources still being able to manage the same
input bandwidth. Similarly, when ρ goes above ρmax, the
system starts to become over-utilised and we should increase
the resources in order to manage all the requests.

The values of ρmin and ρmax can be specified by the user.
The closer ρmin is to ρmax, the more the system will be
efficient, but at the same time, it will also incur in an higher
number of reconfigurations. If the bandwidth variations are too
large, this strategy may lead to a degradation of performance
since too many reconfigurations could be performed by the
system. In this work, we mitigate this problem by locking
a configuration for a certain period of time before consider-
ing a possible reconfiguration. However, more sophisticated
strategies that model and take into account the cost of the
reconfiguration could also be used [5].

C. Choosing the new configuration

We now see how we choose the new configuration when
we either detect that the current one is not able to manage the
input bandwidth or is not efficient enough.

If the emitter or the collector are over-utilised, we could
parallelize them or increase the frequency of the cores where
they are mapped. In a similar way, when they are under-utilised
we could decrease the frequency to save energy. In this work,
for the sake of simplicity, we will never consider the cases in
which this situation happens. However, our approach can be
easily extended to manage this case too.

Accordingly, the only utilisation factor we will consider,

is the one of the set of workers, computed as ρω =

∑N

i=0
ρi

N ,
where ρi is the utilisation factor of a specific worker and N is
the number of workers. When ρω < ρmin, we will decrease the
number of workers and/or the frequency of the cores on which
they are bound. Similarly, if ρω > ρmax, we will increase the
number of workers and/or the frequency of the cores on which
they are bound. With ρω,π , we denote the utilisation factor of
the generic configuration < ω, π > where ω is the number of
workers and π the CPU frequency used.

To know if a specific configuration will still be able to
manage the input bandwidth, we need to predict the utilisation
factor of the system at a configuration different from the
current one. Accordingly, we must know how the TS changes
when the frequency and the number of workers changes.

Without loss of generality, for CPU intensive computations,
the service time of the set of workers is proportional to their
frequency:

T<ω,π>S = T<ω,π>S × π

π

The proportionality of the performance to the frequency
has also been experimentally shown in [6].

Similarly, when the number of workers changes, the service
time of the set of workers will become:

T<ω,π>S = T<ω,π>S × ω

S(ω)

where S(ω) is the expected scalability1 of the application when
ω workers are used. For applications characterised by a good
scalability, we may consider the ideal case S(ω) = ω.

It follows that, in general, if both the number of workers
and the frequency change:

T<ω,π>S = T<ω,π>S × ω × π
ω × π

therefore, given a fixed TA, we have:

ρω,π = ρω,π ×
ω × π
ω × π

(1)

Among all the possible configurations, we are only inter-
ested in those < ω, π > such that ρmin < ρω,π < ρmax. It’s
important to notice that, since ρmax < 1 and since we are
assuming that emitter and collector are never over-utilised, all
these configurations are able to sustain the input bandwidth.

1Defined as S(ω) =
T
<1,π>
S

T
<ω,π>
S



Above this restricted set of configurations, we want to find the
one which minimises the amount of energy consumed.

To find the configuration which consumes the lowest
amount of energy, we need first to understand how the energy
changes when we change the frequencies and/or the number of
workers of the farm. We are not interested in knowing the exact
amount of energy consumed but only a proportional estimation
such that we can compare two different configurations between
each other. According to [7], the power consumption can be
estimated as:

P ∝ (π × γ2)
where π is the operating frequency and γ is the supply voltage.
The voltage depends on the frequency of the processor and can
be automatically changed by the system when the frequency
changes.

This implies that, at a given configuration < ω, π >, the
energy consumption will be:

P ∝ (π × γ2 × ω) (2)

Accordingly, from the restricted set of configurations, we
will pick the one such that π × γ2 × ω is minimum.

Putting all the pieces together we obtain the following
algorithm to choose the new configuration of the system:

for all ω do
for all π do
ρω,π = ρω,π × ω×π

ω×π
if ρmin < ρω,π < ρmax and π × γ2 × ω < min then
min = π × γ2 × ω
nextconf = < ω, π >

end if
end for

end for
return nextconf

Fig. 1. Algorithm for the selection of a new configuration.
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Fig. 2. Service Time vs Energy (in Watts) vs Parallelism degree (Workers) for
the execution of the standard ijk matrix multiplication algorithm for a single
square matrices of size 1024 × 1024 (double precision elements) on a dual
Xeon E5-2695 v2 @2.40GHz platform, varying the CPU frequency.

From the previous reasoning it follows that, since the power
is dominated by γ2 and since it depends on the frequency,

TABLE I. NOTATION USED

Symbol Meaning
ρ Utilisation

ρmin/ρmax Minimum/Maximum allowed utilisation

ω Number of workers

π Frequency

ρω,π Utilisation at configuration < ω, π >

S(ω) Speedup with ω workers

γ Voltage

in many cases it could be more energy efficient to run an
high number of workers at lower frequencies instead of a
minor number of workers running at higher frequencies. As
an example, consider the case in which a matrix multiplication
algorithm has to be computed for a number of input matrices.
Suppose also that the requirement is to satisfy a given service
time value TS for the computation of each single input. In
Fig. 2 is sketched the results obtained for this case when the
input matrices are of size 1024× 1024 and the target service
time is TS = 400ms. In the graph we plotted the average
execution time (in milliseconds) for computing one matrix,
the energy consumed during the execution and the minimum
number of workers that allows to satisfy the requirement. It
can be seen that by using 22 worker threads (the platform
considered in this test has 24 cores) and a CPU frequency of
1.2GHz (the lowest possible for the considered platform) it is
possible to satisfy the given TS minimising also the energy
consumed for computing each single output matrix.

III. APPLICATION

In this section, we describe how we applied the concepts
shown in Sec. II to PEAFOWL, a framework which allows to
write parallel Deep Packet Inspection (DPI) applications [8]
with relatively low programming effort.

We first introduce PEAFOWL, showing its peculiarities
and describing the application we used for our experiments.
Then, we briefly describe FASTFLOW, the framework used by
PEAFOWL to manage the parallel execution. Eventually, we
provide some details on how we implemented the reconfig-
uration in PEAFOWL, thanks to the mechanisms provided by
FASTFLOW.

A. The PEAFOWL DPI framework

PEAFOWL is a flexible and extensible DPI framework
which can be used to identify the application protocols carried
by network packets and to extract and process data and meta-
data carried by those protocols. Conceptually, PEAFOWL is
structured as a task-farm, where the emitter reads the packets
and dispatches them to the workers. Each worker identifies
the protocol and processes the content consequently. After
that, the packet and the result of the processing are forwarded
to the collector. Eventually, the collector decides whether to
drop or forward the packet or to perform any other kind of
operation. The application programmer, by providing callback
functions, has the possibility to customise the code executed
by the emitter, the workers and the collector, providing thus
the possibility to write many different DPI applications and to
use different technologies to send and receive packets to and
from the network (see Fig. 3).



Fig. 3. The architecture model of the PEAFOWL framework.

In order to correctly process network packets, PEAFOWL
divides the packets in so called ”flows” (groups of packets with
same source and destination). These flows are stored into an
hash table, so that PEAFOWL can correlate the packets with
the previous information collected for the same flow. The flows
and the hash table are partitioned among the set of workers, in
such a way that each of them will only manage a contiguous
partition of the table. In this way, each worker accesses only to
its partition without any need of synchronisation with the other
workers. However, this requires the emitter to send to each
worker only the packets belonging to flows it can manage. This
is done by a simple hash function like h(x) = p(x) mod N ,
where p(x) is a function computed over some data contained in
the packet header and N is the current number of workers. By
using PEAFOWL, we had the possibility to easily implement
an application that analyses the HTTP packets travelling over
the network, searching for well known patterns identifying
possible security threats. As shown in Sec. IV, we managed
to validate our approach on an application which resembles
a real case, by inspecting traffic received at a variable rate,
requiring thus different computation capabilities over a period
of time [8].

FASTFLOW: The non functional part of PEAFOWL
concerning the parallel execution and the reconfiguration is
implemented using the FASTFLOW parallel framework, a
stream parallel programming framework providing the appli-
cation programmer with customizable and efficient parallel
patterns for shared memory multi-core platforms [9]. FAST-
FLOW provides different, fully customizable and composable
patterns including a task-farm skeleton, with an arbitrary
number of ”Worker” threads, each one independently executing
tasks appearing on the input stream. Moreover, FASTFLOW
provides the possibility to ”pause” the farm and dynami-
cally add or remove its workers. Communication channels
between threads are implemented using lock-free Single-
Producer Single-Consumer FIFO queues [10], with messages
carrying data pointers rather than plain data copies.

B. Dynamic reconfiguration

When implementing the model described in Sec. II, an
important problem to solve is the computation of the average

service time in isolation (TS). In fact, in our application TS
is influenced by many factors, like the percentage of traffic
composed by HTTP packets, the length of the packets, the per-
centage of packet re-transmitted after losses and others. Since
these factors may significantly change during the execution,
it would be unfeasible to compute in advance or to predict
the service time of an isolated worker. For this reason, instead
of computing ρ as the rate between the average service time
in isolation and the interarrival time, we compute it as the
percentage of time spent processing tasks:

ρ =
Twork
Ttot

When TS < TA this new formulation is equivalent to the
one described in Section II and since in our case we always
keep TS < TA, we can always use this formulation. Every
Tcheck seconds, PEAFOWL checks the value of ρ over the
last Ttot seconds (Tcheck < Ttot) and, as soon as ρ goes out
of the bounds, a reconfiguration is performed. The values of
Tcheck and Ttot can be specified by the user as parameters. The
smaller Ttot is, the more ρ will be influenced by anomalous
spikes in the rate, causing in some situations useless reconfigu-
rations. The bigger it is, the less reconfigurations are executed.

When a change in the number of worker is needed,
PEAFOWL temporary halts the farm, stops or starts some of
the workers and then changes the partition of the hash table to
reflect the new number of workers. To efficiently change the
partitions of the table, instead of having one separated sub table
for each worker, we have a shared table partitioned by means
of two indexes LOWi and HIGHi (see Fig. 3), such that the
worker i will only access the portion of the table between these
two indexes. When the partitions has to be changed, we can
simply change the value of the indexes. After that, the emitter
is updated by changing the value of N in the hash function it
computes to distribute the packets to the workers. Eventually,
PEAFOWL starts again the farm.

Concerning the frequencies, PEAFOWL changes them by
calling the cpufreq-set2 command, available on most Linux
distribution. This does not require to halt the farm thus, in
principle, it does not cause any packet loss. Accordingly,
the possibility of changing the frequencies should reduce the
number of situations in which a change in the number of
workers is needed, thus reducing the losses due to the pauses of
the framework. To be sure that we are changing the frequency
only on the processors on which the workers run, each element
of the farm will be pinned to a specific processor by changing
its affinity. Beside the possibility of changing the frequencies,
cpufreq-set provides the opportunity to specify a so-called
governor, i.e. a CPU frequency scaling algorithm which will
automatically decide which frequency to use according to the
current load on the CPU. Since we have the possibility to
delegate the frequencies management to the governors, we
implemented and tested the following strategies:

Power focused: Is the main proposal of this paper. We
described it in Section II and it tries to minimise the consumed
energy. It uses the userspace governor, which delegates to the
application the task of changing the frequencies.

2we considered Linux-based OS



Cores focused: As in Power Focused policy, we can
reconfigure both the number of workers and the frequency,
but we always choose the configuration which minimises the
number of workers.

CPUfreq on demand: We can only choose the number
of workers while the frequencies will be chosen automatically
by the on-demand governor. This governor changes the fre-
quencies based on the current CPU load. The idea is that the
governor will change the frequencies to adapt the system when
light changes happen in the input rate. If this is not sufficient,
the framework will still find the utilisation factor outside of
the specified bounds and will increase or decrease the number
of workers.

CPUfreq conservative: Similar to CPUfreq on demand
but using the conservative governor. This governor differs in
behaviour from on demand governor since it increases and
decreases the frequency more gracefully.

No frequency: We can only reconfigure the number of
workers, the CPUs will always run at maximum frequency.

In the next section, we compare the different aspects of these
strategies.

IV. RESULTS

In this section, we validate our approach by showing the
results we obtained running our reconfiguration strategy in a
real application.

The platform used for the experiments is a NUMA work-
station having two INTEL XEON E5-2650 @ 2.00GHZ nodes
with a total of 16 cores (2-way hyperthreading). Each NUMA
node has 16GB of main memory, 20MB of shared L3 cache,
256KB and 32KB of core private L2 and L1 caches, respec-
tively. The machine provides the possibility to use DVFS, with
frequencies from 1.20GHz to 2.00GHz with steps of 0.10GHz
and only by changing the frequencies of all the cores of a
socket at the same time (chip-wide).

To test our application in a realistic situation, we took the
rates of the traffic travelling on a backbone link of a Tier1 ISP
between San Jose, CA and Los Angeles, CA [11]. These rates
have a resolution of one second, cover a 1-hour duration and
we used them to send some synthetic traffic to our application.
Originally the application was written to receive data from the
network. Unfortunately, on our machine we can only change
the frequency of all the processors on the NUMA node at
once. This implies that when we reduce the frequency of the
workers we also reduce the frequency of the emitter, which is
reading the packets from the network, causing then an increase
in its service time with consequent packet losses. To avoid this
situation, we could reserve a NUMA node for the execution
of the emitter and the collector, keeping its frequency always
at maximum. However, on our machine, this implies that we
would have only 8 cores available for the execution of the
workers, thus not allowing us to validate our strategy at its
full potential. For this reason in our tests, instead of reading
the packets from the network, we will read them from the
main memory. Using this solution, we found that the emitter
is able to manage the required rate also when its frequency
changes, thus allowing the application to use all the 16 cores
provided by the machine. At the same time, this solution is

functionally equivalent to the one that reads the packets from
the network [8]. Furthermore, some machines already provide
the possibility to individually change the frequency of each
core (e.g. IBM Power8 processor [12]). Using such kind of
machine, we would have been able to test our application by
reading the packets from the network and having at the same
time the possibility to run the emitter at the right frequency
without thus impairing the overall performances.

A. Model assessment

First of all, we checked the correctness of the assumptions
we made about the trend of the utilisation factor and the energy
when the number of workers and the frequency change.

To check the accuracy in the prediction of ρ (equation 1)
we ran our test application and, when a reconfiguration was
required, we took the error between the utilisation factor ρω,π
predicted in configuration < ω, π > and the real utilisation
factor after moving to configuration < ω, π >. This error is
shown in Fig. 4, where on the labels we have the destination
configuration < ω, π >.
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Fig. 4. Absolute error (in percentage) of the utilisation model proposed.

The model demonstrated an error < 4.5%, allowing thus to
predict quite accurately the utilisation factor of the application
at a configuration different from the current one. This error
accounts both the fact that the scalability at n workers is
not exactly n, and the fact that the service time is not
entirely depending on the CPU, slightly reducing the benefit
of frequency changes. As future work, the model could be
improved to take into account both these considerations.

To compute the consumed energy, we used RAPL energy
sensors (Running Average Power Limit), available in Intel



Sandy Bridge architectures. RAPL sensors provide the possi-
bility to read the energy consumed by an entire CPU package,
by the processors cores only or by the memory controller.
As shown in [13], these counters are quite accurate also for
fine-grained energy measurements. To check the consistence of
the model, we sent data to our application at maximum rate,
disabling reconfiguration capabilities and taking the average
Watts consumed in one hour execution for each configuration
< ω, π >. Since we only have the possibility to read the energy
chip-wide, we first computed the energy of the system when
the application was not running, and then we subtracted this
quantity to the result, in order to remove from the result the
energy consumed by cores not used by the application.

Concerning the model, we know that power consumption
is proportional to ω × π × γ2 (equation 2). However, voltage
in turn depends on the operating frequency. If frequency is
directly proportional to supply voltage, the previous relation
predicts cubic power reduction when considering frequency,
but this applies only within a narrow, process specific, sup-
ply voltage range. In real situations, according to [14], the
frequency may have a sublinear proportion to voltage.

On our machine, we experimentally found that the power
is proportional to ω × π1.3. In Fig. 5 we plot on the X-axis
all possible configurations for the target platform varying both
the frequency and the number of workers. For readability, for
each ω, only the first label < ω, π > is shown (the range is
[1.20− 2.40]GHz with steps of 0.10GHz).
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Fig. 5. Comparison between the real power consumed vs the power predicted
by the model.

On the left Y-axis we have the average Watts consumed
by the application at a specific configuration and on the right
Y-axis the result of our estimation at the same configuration.
As we can see, the model proportionally fits the real consumed
energy, thus allowing the framework to take correct decisions
in order to minimise the energy consumed.

B. Tests

To validate the proposed model, first we have to ensure
that the system is able to guarantee an high utilisation inde-
pendently from the rate of the data arriving to the application.
This means that PEAFOWL must be able to keep the utilisation
factor in the range [ρmin, ρmax].

For our experiments, we set ρmin = 80% and ρmax =
90%. In Fig. 6-D we can see that the strategy proposed is
able to keep the utilisation factor within the selected range.
This is possible because the configuration of the application is
changed according to the input rate, as shown in Fig. 6-A. The
step function in Fig. 6-A, represents the product between the
number of activated workers and the operating frequency. As
described in Sec. II this is proportional to the bandwidth the
application is able to sustain and this is proved by the similar
behaviour of the two functions.

Similarly, in Fig. 6-C, we show how the energy consump-
tion changes to fit time by time the rate received by the
application and how it is mainly influenced by the operating
frequency (Fig. 6-B).

When a change in the number of workers is needed,
PEAFOWL waits for all the workers to finish to process the
already enqueued tasks before changing the partitions and
starting again the workers. During this period, no packets are
read, thus causing some losses. We experimentally found that
on our test machine this correspond to an average time less
than 10ms causing, at this rate, ∼ 3%− 4% losses.

This is required because we must ensure that the packets
received before the reconfiguration are processed according to
old partitions and the packets received after the reconfiguration
are processed according to new partitions. Moreover we must
ensure that all the workers, at each time, have the same
image of the partitions. Otherwise, we could have inconsistent
situations in which a worker needs to process a packet that,
after the re-partitioning, belongs to a network flow managed
by a different worker. However, this could be optimised by
keep reading the packets and enqueuing them according to the
new partitions. This would require the worker to distinguish
the packets received before and after the re-partitioning (for
example by putting a mark in the stream) and proper synchro-
nisation mechanisms between the workers (i.e. a barrier) to
change the partitions only when they all receive the first packet
after the mark. It is important to notice that losses happen only
when the number of workers is changed, while no losses are
experienced when only the frequency changes.

We then compared the behaviour of our approach (power
focused) with the other strategies proposed in Sec. III. For
the sake of readability, instead of showing the plots for each
strategy, we present the results in table II.

TABLE II. STRATEGIES COMPARISON.

Strategy Avg. Watts Avg. Workers Avg. Utilisation

Power focused 40.25 8.77 84.61%

Cores focused 45.62 5.96 84.84%

No frequency 48.38 5.99 80.10%

CPUFreq Conservative 51.19 5.99 80.24%

CPUFreq On demand 50.98 6.02 80.08%

The first thing to point out, is that power focused strategy
is the one that performs better in terms of consumed energy
while also being the one that uses the higher number of
workers. As also shown in Fig. 2, this effect is caused by
the possibility to run these workers at lower frequencies and
achieving the same results that could be obtained by running
a minor number of workers at higher frequencies, and thus
consuming more energy. With the strategy proposed, we are
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Fig. 6. Comparison between processed bandwidth and current system
configuration (A). Frequency behaviour (B). Consumed power (C). Utilisation
of the application (D). Values have been sampled once per second. Tics on
the time axis represent 5 minutes intervals.

able to save up to 12% of power with respect to the strategy
where we can change the frequency but we always try to
minimise the number of workers and up to 17% of the energy
with respect to a strategy where frequency is not considered
at all (no frequency). The reason why no frequency strategy
consumes more energy than power focused can be explained
by analysing the utilisation factors. When using no frequency,
the utilisation factor is lower and, as shown in Fig. 7, it is
characterised for most of the time by an utilisation < ρmin, due

to the impossibility to find a configuration characterised by a
ρω,π such that ρmin < ρω,π < ρmax. Accordingly, PEAFOWL
has to choose a sub optimal configuration which ensures the
required performances but wastes energy. Regarding CPUFreq
strategies, we can see that they behave very similar to no
frequency. This is most probably due to the mechanism used by
FASTFLOW to manage the situations when a worker finds no
task in the input queue. In this case indeed, in order to achieve
high performances, the worker keep actively polling the queue
waiting for a task. This will cause an high CPU utilisation,
and thus the CPUFreq governor will always maintain the
highest frequency. This problem is not present in our internal
strategies since we do not check the CPU utilisation but the
real utilisation of the application by mean of probes in the
framework.
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Fig. 7. Utilisation of no frequency strategy. Values have been sampled once
per second. Tics on the time axis represent 5 minutes intervals.

V. RELATED WORK

We analyse in this section some research works addressing
the problem of power and performance efficiency in parallel
computations. There has been relatively little work on the
interactions between processes/threads variations and energy-
efficiency.

Li and Martinez [15] optimise parallel workloads running
on multi-core systems by dynamically changing the number
of active processors and the voltage and frequency levels at
which the system runs. As in our work, they apply DVFS chip-
wide and consider the problem of maximising power savings
while delivering a given level of performance. Differently from
our work, they do not provide a prediction model on which
the dynamic re-configuration is based; they propose simple
heuristics that can be used to cut down on the search effort
along both dimensions of the optimisation problem.

In [16] the authors consider the case in which the voltage
and frequency levels are changed independently in each core.
They examine different DVFS policies for high performance
and power efficiency. Their solutions are primarily based on
the exhaustive search of the solution space.

Teodorescu et al. [17] develop an optimisation algorithm
based on linear programming to provide power management
for a chip-multi-processor (CMP) based on both DVFS and
thread mapping. The work is based on the assumption that



power consumption of a CMP at each DVFS level can be
estimated accurately. This assumption is effective only when
the system is running workloads that are the same or very
similar with the one used to do power estimation.

Other research works, focusing only on dynamic recon-
figuration and performance optimisation in distributed parallel
computations are those related to the ASSIST run-time [18],
[19] and to the Behavioural Skeleton approach [20], [21].

VI. CONCLUSION AND FUTURE WORK

In this work we presented a novel approach for recon-
figuration of stream-based parallel applications structured as
task-farm. This approach tries to minimise the amount of
consumed energy by operating both on the number of replicas
(i.e. the number of workers ω) and on their frequency (π).
Among all the possible configurations (< ω, π >), we always
choose the one which our model estimates will consume less
energy while being able to respect the required QoS. To
validate the proposed model, we applied it to a Deep Packet
Inspection (DPI) application which analyses network traffic
received at variable rates. We shown that the DPI application
is able to maintain an high utilisation factor of the system
by reconfiguring itself in a way it always uses only the
needed resources. Consequently, the power consumed by the
application is proportional to the input rate. We also compared
our strategy with other possible strategies that can be used to
reconfigure the application, showing that the one we proposed
performs better in terms of consumed energy.

This work can be further extended in different ways: by
applying the proposed approach to different applications or
generalising the model for the cases where is possible to indi-
vidually change the frequencies of the single core. Indeed, we
always considered the average utilisation factors of the entire
set of task-farm workers. This is a good measurement in all the
cases in which the workload is not very unbalanced. However,
for highly unbalanced task-farm computations, we could check
the individual utilisation factors ρi of each worker and take
actions locally, for example by increasing or decreasing only
their frequency. Furthermore, it would be interesting to analyse
how hyperthreading could interact with our approach. For
example, before removing a worker, we could move it on the
same core of another underutilised worker. Alternatively, we
could use hyperthreading to benefit from the effects of DVFS
also for computations that are not CPU intensive by running
more workers on the same core.
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