Network Monitoring on Multi cores
with Algorithmic Skeletons

Marco Danelutto, Luca Deri, Daniele De Sensi

Dept. of Computer Science, University of Pisa, Italy

PARCO 2011

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Contents

Introduction
FastFlow

ffProbe

Conclusions

Danelutto, D e Sensi

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
e0

Hardware Scenario

Networking scenario

Increasing number of applications on IP and increasing speed of
network interfaces (100M — 1G — 10G)

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



Introduction
e0

Hardware Scenario

Networking scenario

Increasing number of applications on IP and increasing speed of
network interfaces (100M — 1G — 10G)

Increasing need for highly efficient network monitoring applications
» special purpose hw/sw solutions from vendors
e.g. Tilera multicores:

» 64 to 100 cores per socket, cache only (private L1,
local/shared L2, 4 external memory interfaces)

» high speed network interfaces with direct cache packet
injection

» or commodity processors with extremely efficient
programming techniques
> no unnecessary overheads with kernel interactions
» no unnecessary overheads for synchronization

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
oe

Hardware Scenario

Processing scenario

» General purpose:
» 6 to 8 full cores per socket
> up to 64/128 threads per socket (Sun/Oracle T3/4)
» 80 cores per socket already demonstrated
(Intel Terascale prototype)

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
oe

Hardware Scenario

Processing scenario

» General purpose:

>

>

>

6 to 8 full cores per socket

up to 64/128 threads per socket (Sun/Oracle T3/4)
80 cores per socket already demonstrated

(Intel Terascale prototype)

» Special purpose:

>

>

>

0(100) cores in GPUs

only suitable to support (some) data parallel code
impressive speedup over general purpose multicores:
comparable speedup on a 48 AMD Magny chorus and on a
(quite old) nVidia GTX285

time spent to send (packet) data to / receive (record) da
from GPUs impairs usage for network monitoring

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
[ ele}

Software Scenario

Current tools

> “low level” programming tools (Pthreads)
— full responsibilities on programmers

» “higher level” programming tools (OpenMP, OpenCL)
— most responsibilities still on programmers

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



Introduction
[ ele}

Software Scenario

Current tools

> “low level” programming tools (Pthreads)
— full responsibilities on programmers

» “higher level” programming tools (OpenMP, OpenCL)
— most responsibilities still on programmers

Recognized need for actually high level tools:

Architecting parallel software with design patterns, not
Jjust parallel programming languages. Our situation is
similar to that found in other engineering disciplines
where a new challenge emerges that requires a

top-to-bottom rethinking of the entire engineering
process;

Asanovic et al. “A View of the Parallel Computing Landscape” CACM 2009

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
(o] lo}

Software Scenario

Parallel design patterns

v

from sw engineering community
introduced by Massingill, Mattson, Sanders in early 2000
» “Patterns for parallel programming” Addison-Wesley 2004

v

v

design patterns a la Gamma book
» name, problem, solution, use cases, etc.

v

define 4 pattern spaces (layered):
concurrency, algorithms, implementation, mechanisms

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



Introduction
(o] lo}

Software Scenario

Parallel design patterns

v

from sw engineering community
introduced by Massingill, Mattson, Sanders in early 2000
» “Patterns for parallel programming” Addison-Wesley 2004

v

v

design patterns a la Gamma book
» name, problem, solution, use cases, etc.

v

define 4 pattern spaces (layered):
concurrency, algorithms, implementation, mechanisms

Application programmers
» should learn pattern lesson

» and implement it as needed in their own applications

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
[e]e] ]

Software Scenario

Algorithmic skeletons
Independently developed but strictyl related to design patterns:

» from parallel programming community

» introduced by Cole in 1988 as
— parametric, reusable parallelism exploitation patterns
— directly exposed to programmers as language

constructs/library calls
— completely hiding the technicalities related to parallelism

exploitation
> languages & libraries since the '90
» P3L, Skil, ASSIST, Muesli, SkeTo, Mallba, Muskel, Skipper,
FastFlow, ...

http://www.di.unipi.it

Danelutto, Deri, De Sensi
Network Monitoring on Multi cores with Algorithmic Skeletons




Introduction
[e]e] ]

Software Scenario

Algorithmic skeletons
Independently developed but strictyl related to design patterns:

» from parallel programming community

» introduced by Cole in 1988 as
— parametric, reusable parallelism exploitation patterns
— directly exposed to programmers as language

constructs/library calls
— completely hiding the technicalities related to parallelism

exploitation
> languages & libraries since the '90
» P3L, Skil, ASSIST, Muesli, SkeTo, Mallba, Muskel, Skipper,
FastFlow, ...
Application programmers
> instantiate existing skeletons
» to (safely and efficiently) build their parallel application

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction
[ ]

Our aim

Main goal of this work

» exploit structured parallel programming techniques

> to support network monitoring

» on commodity hardware

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



FastFlow
[ ]

Architectural design

FastFlow

Advanced programming framework
> targeting multicores
» minimizing synchronization latencies

» streaming support through skeletons

Directly pr applications and further
targeting specific usage (e.g. accelerator & self-offloading)

> expan dable [ ‘Applications & Problem Solving Envi ]
7

> Oopen source

FastFlow (" Gomposable parametric patterns ¢

High-level of streaming networks
programming Skeletons: Pipeline, farm, DEG. ..
e Arbitrary streaming networks
OW-BVEI || ckcfree SPMC, MPSC, MPMC queues,
programming

non-determinism, cyclic networks

support | Lock-free SPSC queues and threading model,

Run-time Linear streaming networks
Producer-Consumer paradigm

ore and many-core
UMA or cc-NUMA

Danelutto, D

Network Monitoring on Multi cores with Algorithmic Skeletons



FastFlow
L o]

Mechanisms

FastFlow: simple streaming networks

Single Producer Single Consumer (SPSC) queue

> uses results from the '80s

> lock-free, wait-free

» no memory barriers for Total Store Order processor (e.g. Intel,
AMD)

> single memory barrier for weaker memory consistency models
(e.g. PowerPC)

— very low latency in communications

®—1s—©)

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



FastFlow
oe®
Mechanisms

FastFlow: simple streaming networks

Other queues: SPMC MPSC MPSC

» one-to-many, many-to-one and many-to-many synchronization
and data flow

> use an explicit arbiter thread
» providing lock-free and wait-free arbitrary data-flow graphs
» cyclic graphs (provably deadlock-free)

4.{33 }G- V-0 ==
SPMC % @ MPSC N

Danelutto, Deri, De Sensi

http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



FastFlow
L o]

Patterns

FastFlow: high level programming abstractions
Several “streaming” skeletons provided
» farm

C L XigD, Xiy Xi—1 - -+ > SPMC MPSC = - .- f(xi11), f(xi), f(xi—1) - - -

> pipeline

XL Xy X1 _’0_’6" o g(FO1)s g(F0)), g(Fxi—1)) - -

» farm with feedback (divide & conquer)

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



FastFlow
oe

Patterns

Sample code
int main(int argc, char % argv[]) {
ff_pipeline pipe;
sl = new PacketCaptureStage(Npackets);
s2 = new PacketAnalysisStage (...)
s3 = new PacketAnalysisStage (...)
pipe.add_stage(sl);

pipe.add_stage(s2);
pipe.add_stage(s3);

if (pipe.run_and_wait_end()<0) {
// handle error

return O;

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



FastFlow

L o)
Assessed results
FastFlow results
Benchmark Parameters Skeleton used  Speedup / Fcores
Matrix Mult. 1024x1024  farm no collector 76/8
Quicksort  50M integers D&C 6.8/8
Fibonacci Fib(50) D&C 921 /8

Table: Microbenchmarks parallelized using FastFlow.

Application Skeleton used Performance
YaDT-FF D&C 4.5-7.5 Speedup
StochKit-FF farm 10-11 Scalabitily

SWPS3-FF farm no collector  12.5-34.5 GCUPS

Table: Applications parallelized using FastFlow.

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



FastFlow

oe
Assessed results
FastFlow results
16 T T T T T T T
—— ideal
14 + Xoooos 0.5us
""" weo lus
12 b 8 Sus
10

Speedup

1 2 3 45 6 7 8 91011121314 1516
FastFlow's worker threads

o N b~ O

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe
[ le]

NetFlow

NetFlow

Network protocol to collect IP
traffic information

» by Cisco
» de facto standard (— IPFIX)

» works on flows: unidir
sequence of packets with
same source, dest and type
of protocol

> generates records hosting:

» version and sequence
number, timestamps

> layer 3 headers & routing
info

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe

o] ]
NetFlow
Linux new type of network socket applcation
» extremely efficient device to kernel Gl / N
1 Kernel
ring packet copy \\ ——
> exploits Linux NAPI interface ey
. . Buffer :
(interrupts + polling) ‘> =
> two operation modes Device Ditver
» device to (multiple) kernel rings
— supports packet directing to Appicaton
different applications Applicton N
> device to memory mapped kernel NI Komel
ring * Commadity NIC
— zeroes copy time Mgn‘f;w o~
— but directs packets to one e
application only e —

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



ffProbe
[ leJele]

ffProbe: architectural design

Architectural design

Three different kind of parallel designs
> simple multiple design re-using sequential components
> explore different possibilities
> to match packet capture related constrains
General design:
» modular in the number of packet capture queues
— one or more PF_RING queues

» modular in the number of threads processing incoming
packets
— stages in a pipeline: each stage processes part of
the captured packets
— more pipelines attached to different PF_RING

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe
[e] Tele]

ffProbe: architectural design

Base design

Hash Table Hash Table
(part 1) (part n)

wor_}—{_wea o

pipe: 1 PF_RING queue, 1 reader stage, n stages processing packets

Danelutto, Deri, De Sensi

g on Multi cores with Algorithmic Skeletons



ffProbe
[e] Tele]

ffProbe: architectural design

Base design

Hash Table Hash Table
(part 1) (part n)

wor_}—{_wea o

pipe: 1 PF_RING queue, 1 reader stage, n stages processing packets
» RDR
» reads captured packets
» groups them in messages
> each packet directed to one stage through hash label
forwards messages through the pipeline
» WRK
» reads a message (group of packets)
» processes packets with proper (own) hash flag
» on termination forwards resulting records

v

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe
[e]e] o]

ffProbe: architectural design

Variations Hash Table Hash Table

(part 1) (part n)

R }—{_wma_ > -

Danelutto, D

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe: architectural design

Variations

ffProbe
[e]e] o]

Hash Table
(part 1)
RoR  f— wrki |
Hash Table
(part 1)

RoR i writ |

Hash Table
(part 1)

ROR  — wrk1 |

Danelutto, D

Network Monitoring on Multi cores with Algorithmic Skeletons

Hash Table
(part n)




ffProbe
[e]e] o]

ffProbe: architectural design

Variations Hash Table Hash Table
(part 1) (part n)
T e
Hash Table
(part 1)
RDR }—){ WRK1 ]
Hash Table
(part 1)

ROR  |— WRKL ]

Hash Table Hash Table
(part 1) (part n)

Danelutto, D

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe
[e]e]e] ]

ffProbe: architectural design

Packet processing

» Basic network monitoring — very fine grain processing
» extract simple data fields from packets

» More data processing needed for more evolved inspection
strategies

» ffProbe:
» experiments made with the finer grain processing functions

— results improve with larger grain
and with more stages / pipelines

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



ffProbe
e0

ffProbe: results

Experimental results (absolute)

Mega | Memory
schema Par. degree Thr# PPS | footprint
1 pipeline Seq 1 3.76 50M
n workers 1R + 1W 2 6.45 94M

1R + 2W 3 8.42 78M
2 PF_RING | 1R + 1W per pipe 4 10.150
2 pipelines | 1R 4 2W per pipe 6 10.143
2 PF_RING 2R + 1W 3 5.54
1 pipeline 2R 4+ 2W 4 9.13
2R + 3W 5 10.033

on a Dual Nehalem (Xeon E5520, 2.27GHz) with 10 Gbit
Intel-based Silicom NICs

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



ffProbe
oe

ffProbe: results
Comparisons (nProbe)

Scalability (per probe)

A single instance does not scale 4
with the thread number over 3
3Mpps: 2
1
1 2 3 4
Thread No.
Standard vs. Quick
11.00 Quick
Multiple instances on different 8.25 e Standard
PF_RING queues process as 5.50 - 2
many packets as ffProbe: 275427~
1 2 3 4 5 6 7
Queue No.

Danelutto, Deri, De Sensi

g on Multi cores with Algorithmic Skeletons



Conclusions

Assessments

» High level, highly efficient parallel programming environment
> supports network monitoring

on commodity hardware

targeting 10Gbps network interfaces

different parallel design experimented with negligible

programming effort (once base sequential components have
been defined)

v

v

v

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Conclusions

Assessments

» High level, highly efficient parallel programming environment
> supports network monitoring

on commodity hardware

targeting 10Gbps network interfaces

different parallel design experimented with negligible

programming effort (once base sequential components have
been defined)

v

v

v

» High speed network monitoring

> special purpose hw — commodity hw
» systems (as tested) in the 3-4K euro range

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Conclusions

Future (ongoing) work

To be improved:
» modularization of analysis code (plugin)

>

Product design currently on going:

» clean up and engineering of the code

v

documentation (internal, user)

> experiments on larger core configurations

v

to be released under open source license

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores w Igorithmic Skeletons



Conclusions

Any questions ?

{marcod,desensi}@di.unipi.it, deri@ntop.org

Danelutto, D e Sensi

Network Monitoring on Multi cores with Algorithmic Skeletons



	Introduction
	
	
	

	FastFlow
	
	
	
	

	ffProbe
	
	
	

	Conclusions

