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Hardware Scenario

Networking scenario

Increasing number of applications on IP and increasing speed of
network interfaces (100M → 1G → 10G)

Increasing need for highly efficient network monitoring applications

I special purpose hw/sw solutions from vendors

e.g. Tilera multicores:
I 64 to 100 cores per socket, cache only (private L1,

local/shared L2, 4 external memory interfaces)
I high speed network interfaces with direct cache packet

injection

I or commodity processors with extremely efficient
programming techniques

I no unnecessary overheads with kernel interactions
I no unnecessary overheads for synchronization
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Hardware Scenario

Processing scenario

I General purpose:
I 6 to 8 full cores per socket
I up to 64/128 threads per socket (Sun/Oracle T3/4)
I 80 cores per socket already demonstrated

(Intel Terascale prototype)

I Special purpose:
I O(100) cores in GPUs
I only suitable to support (some) data parallel code
I impressive speedup over general purpose multicores:

comparable speedup on a 48 AMD Magny chorus and on a
(quite old) nVidia GTX285

I time spent to send (packet) data to / receive (record) data
from GPUs impairs usage for network monitoring
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Software Scenario

Current tools

I “low level” programming tools (Pthreads)
→ full responsibilities on programmers

I “higher level” programming tools (OpenMP, OpenCL)
→ most responsibilities still on programmers

Recognized need for actually high level tools:

Architecting parallel software with design patterns, not
just parallel programming languages. Our situation is
similar to that found in other engineering disciplines
where a new challenge emerges that requires a
top-to-bottom rethinking of the entire engineering
process;

Asanovic et al. “A View of the Parallel Computing Landscape” CACM 2009
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Software Scenario

Parallel design patterns

I from sw engineering community
I introduced by Massingill, Mattson, Sanders in early 2000

I “Patterns for parallel programming” Addison-Wesley 2004

I design patterns à la Gamma book
I name, problem, solution, use cases, etc.

I define 4 pattern spaces (layered):
concurrency, algorithms, implementation, mechanisms

Application programmers

I should learn pattern lesson

I and implement it as needed in their own applications
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Software Scenario

Algorithmic skeletons
Independently developed but strictyl related to design patterns:

I from parallel programming community
I introduced by Cole in 1988 as

→ parametric, reusable parallelism exploitation patterns
→ directly exposed to programmers as language

constructs/library calls
→ completely hiding the technicalities related to parallelism

exploitation

I languages & libraries since the ’90
I P3L, Skil, ASSIST, Muesli, SkeTo, Mallba, Muskel, Skipper,

FastFlow, ...

Application programmers

I instantiate existing skeletons

I to (safely and efficiently) build their parallel application

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction FastFlow ffProbe Conclusions

Software Scenario

Algorithmic skeletons
Independently developed but strictyl related to design patterns:

I from parallel programming community
I introduced by Cole in 1988 as

→ parametric, reusable parallelism exploitation patterns
→ directly exposed to programmers as language

constructs/library calls
→ completely hiding the technicalities related to parallelism

exploitation

I languages & libraries since the ’90
I P3L, Skil, ASSIST, Muesli, SkeTo, Mallba, Muskel, Skipper,

FastFlow, ...

Application programmers

I instantiate existing skeletons

I to (safely and efficiently) build their parallel application

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons



Introduction FastFlow ffProbe Conclusions

Our aim

Main goal of this work

I exploit structured parallel programming techniques

I to support network monitoring

I on commodity hardware
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Architectural design

FastFlow

Advanced programming framework

I targeting multicores

I minimizing synchronization latencies

I streaming support through skeletons

I expandable

I open source

Multi-core and many-core
cc-UMA or cc-NUMA 

Linear streaming networks
Lock-free SPSC queues and threading model, 

Producer-Consumer paradigm

Arbitrary streaming networks
Lock-free SPMC, MPSC, MPMC queues, 

non-determinism, cyclic networks

Composable parametric patterns 
of streaming networks

Skeletons: Pipeline, farm, D&C, ...
High-level

programming

Low-level
programming

Run-time
support

SPMC MPSC

Wn

W1

Farm

E C

SPMC MPSC

FastFlow

P C-P C

Applications & Problem Solving Environments
Directly programmed applications and further abstractions 
targeting specific usage (e.g. accelerator & self-offloading)
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Mechanisms

FastFlow: simple streaming networks

Single Producer Single Consumer (SPSC) queue

I uses results from the ’80s

I lock-free, wait-free

I no memory barriers for Total Store Order processor (e.g. Intel,
AMD)

I single memory barrier for weaker memory consistency models
(e.g. PowerPC)

→ very low latency in communications

P SPSC C
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Mechanisms

FastFlow: simple streaming networks

Other queues: SPMC MPSC MPSC

I one-to-many, many-to-one and many-to-many synchronization
and data flow

I use an explicit arbiter thread
I providing lock-free and wait-free arbitrary data-flow graphs
I cyclic graphs (provably deadlock-free)

SPSC E
SPS

C

SPSC
SPMC

SPSCC

SPSC

SPS
C

MPSC
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Patterns

FastFlow: high level programming abstractions
Several “streaming” skeletons provided

I farm

SPMC

f

f

MPSC

.

.

.

. . . xi+1, xi , xi−1 . . . . . . f (xi+1), f (xi ), f (xi−1) . . .

I pipeline
f g. . . xi+1, xi , xi−1 . . . . . . g(f (xi+1)), g(f (xi )), g(f (xi−1)) . . .

I farm with feedback (divide & conquer)

SPMC

f

f

MPSC

.

.

.

. . . xi+1, xi , xi−1 . . .

. . . x′j , x
′
j+1 . . .

. . . f (xi+1), f (x′j ), f (xi ), f (xi−1) . . .
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Patterns

Sample code

i n t main ( i n t argc , cha r ∗ a rgv [ ] ) {
. . .
f f p i p e l i n e p i p e ;

s1 = new PacketCaptureStage ( Npackets ) ;
s2 = new Pack e tAna l y s i s S t ag e ( . . . ) ;
s3 = new Pack e tAna l y s i s S t ag e ( . . . ) ;

p i p e . add s t age ( s1 ) ;
p i p e . add s t age ( s2 ) ;
p i p e . add s t age ( s3 ) ;

i f ( p i p e . r un and wa i t e nd ()<0) {
// hand l e e r r o r . . .

}
r e t u r n 0 ;

}

Capture

Analyze

Analyze
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Assessed results

FastFlow results

Benchmark Parameters Skeleton used Speedup / #cores

Matrix Mult. 1024x1024 farm no collector 7.6 / 8
Quicksort 50M integers D&C 6.8 / 8
Fibonacci Fib(50) D&C 9.21 / 8

Table: Microbenchmarks parallelized using FastFlow.

Application Skeleton used Performance

YaDT-FF D&C 4.5-7.5 Speedup
StochKit-FF farm 10-11 Scalabitily

SWPS3-FF farm no collector 12.5-34.5 GCUPS

Table: Applications parallelized using FastFlow.
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FastFlow results
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NetFlow

NetFlow

Network protocol to collect IP
traffic information

I by Cisco

I de facto standard (→ IPFIX)

I works on flows: unidir
sequence of packets with
same source, dest and type
of protocol

I generates records hosting:
I version and sequence

number, timestamps
I layer 3 headers & routing

info

LAN

LAN

Router

Internet

Collector

Storage

Analyzer
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NetFlow

PF RING

Linux new type of network socket

I extremely efficient device to kernel
ring packet copy

I exploits Linux NAPI interface
(interrupts + polling)

I two operation modes
I device to (multiple) kernel rings

→ supports packet directing to
different applications

I device to memory mapped kernel
ring
→ zeroes copy time
→ but directs packets to one
application only
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ffProbe: architectural design

Architectural design

Three different kind of parallel designs

I simple multiple design re-using sequential components

I explore different possibilities

I to match packet capture related constrains

General design:
I modular in the number of packet capture queues

→ one or more PF RING queues

I modular in the number of threads processing incoming
packets

→ stages in a pipeline: each stage processes part of
the captured packets

→ more pipelines attached to different PF RING
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ffProbe: architectural design

Base design

PF RING RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

pipe: 1 PF RING queue, 1 reader stage, n stages processing packets

I RDR
I reads captured packets
I groups them in messages
I each packet directed to one stage through hash label
I forwards messages through the pipeline

I WRK
I reads a message (group of packets)
I processes packets with proper (own) hash flag
I on termination forwards resulting records
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ffProbe: architectural design

Variations
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PF RING
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ffProbe: architectural design

Packet processing

I Basic network monitoring → very fine grain processing
I extract simple data fields from packets

I More data processing needed for more evolved inspection
strategies

I ffProbe:
I experiments made with the finer grain processing functions

→ results improve with larger grain
and with more stages / pipelines
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ffProbe: results

Experimental results (absolute)

Mega Memory
schema Par. degree Thr# PPS footprint
1 pipeline Seq 1 3.76 50M
n workers 1R + 1W 2 6.45 94M

1R + 2W 3 8.42 78M

2 PF RING 1R + 1W per pipe 4 10.150 64M
2 pipelines 1R + 2W per pipe 6 10.143 64M

2 PF RING 2R + 1W 3 5.54 115M
1 pipeline 2R + 2W 4 9.13 150M

2R + 3W 5 10.033 150M

on a Dual Nehalem (Xeon E5520, 2.27GHz) with 10 Gbit
Intel-based Silicom NICs
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ffProbe: results

Comparisons (nProbe)

A single instance does not scale
with the thread number over
3Mpps:

Multiple instances on different
PF RING queues process as
many packets as ffProbe:

Thread No.

Scalability (per probe)

1

2

3

4

1 2 3 4

Queue No.

Standard vs. Quick

1 2 3 4 5 6 7
2.75

5.50

8.25

11.00
Quick
Standard
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Assessments

I High level, highly efficient parallel programming environment
I supports network monitoring
I on commodity hardware
I targeting 10Gbps network interfaces
I different parallel design experimented with negligible

programming effort (once base sequential components have
been defined)

I High speed network monitoring
I special purpose hw → commodity hw
I systems (as tested) in the 3-4K euro range
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Future (ongoing) work

To be improved:

I modularization of analysis code (plugin)

I ...

Product design currently on going:

I clean up and engineering of the code

I documentation (internal, user)

I experiments on larger core configurations

I to be released under open source license
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Any questions ?

{marcod,desensi}@di.unipi.it, deri@ntop.org
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