
Introduction FastFlow ffProbe Conclusions

Network Monitoring on Multi cores
with Algorithmic Skeletons

Marco Danelutto, Luca Deri, Daniele De Sensi

Dept. of Computer Science, University of Pisa, Italy

PARCO 2011

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Contents

Introduction

FastFlow

ffProbe

Conclusions

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Hardware Scenario

Networking scenario

Increasing number of applications on IP and increasing speed of
network interfaces (100M → 1G → 10G)

Increasing need for highly efficient network monitoring applications

I special purpose hw/sw solutions from vendors

e.g. Tilera multicores:
I 64 to 100 cores per socket, cache only (private L1,

local/shared L2, 4 external memory interfaces)
I high speed network interfaces with direct cache packet

injection

I or commodity processors with extremely efficient
programming techniques

I no unnecessary overheads with kernel interactions
I no unnecessary overheads for synchronization

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Hardware Scenario

Networking scenario

Increasing number of applications on IP and increasing speed of
network interfaces (100M → 1G → 10G)
Increasing need for highly efficient network monitoring applications

I special purpose hw/sw solutions from vendors

e.g. Tilera multicores:
I 64 to 100 cores per socket, cache only (private L1,

local/shared L2, 4 external memory interfaces)
I high speed network interfaces with direct cache packet

injection

I or commodity processors with extremely efficient
programming techniques

I no unnecessary overheads with kernel interactions
I no unnecessary overheads for synchronization

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Hardware Scenario

Processing scenario

I General purpose:
I 6 to 8 full cores per socket
I up to 64/128 threads per socket (Sun/Oracle T3/4)
I 80 cores per socket already demonstrated

(Intel Terascale prototype)

I Special purpose:
I O(100) cores in GPUs
I only suitable to support (some) data parallel code
I impressive speedup over general purpose multicores:

comparable speedup on a 48 AMD Magny chorus and on a
(quite old) nVidia GTX285

I time spent to send (packet) data to / receive (record) data
from GPUs impairs usage for network monitoring

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Hardware Scenario

Processing scenario

I General purpose:
I 6 to 8 full cores per socket
I up to 64/128 threads per socket (Sun/Oracle T3/4)
I 80 cores per socket already demonstrated

(Intel Terascale prototype)

I Special purpose:
I O(100) cores in GPUs
I only suitable to support (some) data parallel code
I impressive speedup over general purpose multicores:

comparable speedup on a 48 AMD Magny chorus and on a
(quite old) nVidia GTX285

I time spent to send (packet) data to / receive (record) data
from GPUs impairs usage for network monitoring

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Software Scenario

Current tools

I “low level” programming tools (Pthreads)
→ full responsibilities on programmers

I “higher level” programming tools (OpenMP, OpenCL)
→ most responsibilities still on programmers

Recognized need for actually high level tools:

Architecting parallel software with design patterns, not
just parallel programming languages. Our situation is
similar to that found in other engineering disciplines
where a new challenge emerges that requires a
top-to-bottom rethinking of the entire engineering
process;

Asanovic et al. “A View of the Parallel Computing Landscape” CACM 2009

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Software Scenario

Current tools

I “low level” programming tools (Pthreads)
→ full responsibilities on programmers

I “higher level” programming tools (OpenMP, OpenCL)
→ most responsibilities still on programmers

Recognized need for actually high level tools:

Architecting parallel software with design patterns, not
just parallel programming languages. Our situation is
similar to that found in other engineering disciplines
where a new challenge emerges that requires a
top-to-bottom rethinking of the entire engineering
process;

Asanovic et al. “A View of the Parallel Computing Landscape” CACM 2009

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Software Scenario

Parallel design patterns

I from sw engineering community
I introduced by Massingill, Mattson, Sanders in early 2000

I “Patterns for parallel programming” Addison-Wesley 2004

I design patterns à la Gamma book
I name, problem, solution, use cases, etc.

I define 4 pattern spaces (layered):
concurrency, algorithms, implementation, mechanisms

Application programmers

I should learn pattern lesson

I and implement it as needed in their own applications

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Software Scenario

Parallel design patterns

I from sw engineering community
I introduced by Massingill, Mattson, Sanders in early 2000

I “Patterns for parallel programming” Addison-Wesley 2004

I design patterns à la Gamma book
I name, problem, solution, use cases, etc.

I define 4 pattern spaces (layered):
concurrency, algorithms, implementation, mechanisms

Application programmers

I should learn pattern lesson

I and implement it as needed in their own applications

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Software Scenario

Algorithmic skeletons
Independently developed but strictyl related to design patterns:

I from parallel programming community
I introduced by Cole in 1988 as

→ parametric, reusable parallelism exploitation patterns
→ directly exposed to programmers as language

constructs/library calls
→ completely hiding the technicalities related to parallelism

exploitation

I languages & libraries since the ’90
I P3L, Skil, ASSIST, Muesli, SkeTo, Mallba, Muskel, Skipper,

FastFlow, ...

Application programmers

I instantiate existing skeletons

I to (safely and efficiently) build their parallel application

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Software Scenario

Algorithmic skeletons
Independently developed but strictyl related to design patterns:

I from parallel programming community
I introduced by Cole in 1988 as

→ parametric, reusable parallelism exploitation patterns
→ directly exposed to programmers as language

constructs/library calls
→ completely hiding the technicalities related to parallelism

exploitation

I languages & libraries since the ’90
I P3L, Skil, ASSIST, Muesli, SkeTo, Mallba, Muskel, Skipper,

FastFlow, ...

Application programmers

I instantiate existing skeletons

I to (safely and efficiently) build their parallel application

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Our aim

Main goal of this work

I exploit structured parallel programming techniques

I to support network monitoring

I on commodity hardware

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Architectural design

FastFlow

Advanced programming framework

I targeting multicores

I minimizing synchronization latencies

I streaming support through skeletons

I expandable

I open source

Multi-core and many-core
cc-UMA or cc-NUMA

Linear streaming networks
Lock-free SPSC queues and threading model,

Producer-Consumer paradigm

Arbitrary streaming networks
Lock-free SPMC, MPSC, MPMC queues,

non-determinism, cyclic networks

Composable parametric patterns
of streaming networks

Skeletons: Pipeline, farm, D&C, ...
High-level

programming

Low-level
programming

Run-time
support

SPMC MPSC

Wn

W1

Farm

E C

SPMC MPSC

FastFlow

P C-P C

Applications & Problem Solving Environments
Directly programmed applications and further abstractions
targeting specific usage (e.g. accelerator & self-offloading)

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Mechanisms

FastFlow: simple streaming networks

Single Producer Single Consumer (SPSC) queue

I uses results from the ’80s

I lock-free, wait-free

I no memory barriers for Total Store Order processor (e.g. Intel,
AMD)

I single memory barrier for weaker memory consistency models
(e.g. PowerPC)

→ very low latency in communications

P SPSC C

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Mechanisms

FastFlow: simple streaming networks

Other queues: SPMC MPSC MPSC

I one-to-many, many-to-one and many-to-many synchronization
and data flow

I use an explicit arbiter thread
I providing lock-free and wait-free arbitrary data-flow graphs
I cyclic graphs (provably deadlock-free)

SPSC E
SPS

C

SPSC
SPMC

SPSCC

SPSC

SPS
C

MPSC

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Patterns

FastFlow: high level programming abstractions
Several “streaming” skeletons provided

I farm

SPMC

f

f

MPSC

.

.

.

. . . xi+1, xi , xi−1 f (xi+1), f (xi), f (xi−1) . . .

I pipeline
f g. . . xi+1, xi , xi−1 g(f (xi+1)), g(f (xi)), g(f (xi−1)) . . .

I farm with feedback (divide & conquer)

SPMC

f

f

MPSC

.

.

.

. . . xi+1, xi , xi−1 . . .

. . . x′j , x
′
j+1 . . .

. . . f (xi+1), f (x′j), f (xi), f (xi−1) . . .

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Patterns

Sample code

i n t main (i n t argc , cha r ∗ a rgv []) {
. . .
f f p i p e l i n e p i p e ;

s1 = new PacketCaptureStage (Npackets) ;
s2 = new Pack e tAna l y s i s S t ag e (. . .) ;
s3 = new Pack e tAna l y s i s S t ag e (. . .) ;

p i p e . add s t age (s1) ;
p i p e . add s t age (s2) ;
p i p e . add s t age (s3) ;

i f (p i p e . r un and wa i t e nd ()<0) {
// hand l e e r r o r . . .

}
r e t u r n 0 ;

}

Capture

Analyze

Analyze

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Assessed results

FastFlow results

Benchmark Parameters Skeleton used Speedup / #cores

Matrix Mult. 1024x1024 farm no collector 7.6 / 8
Quicksort 50M integers D&C 6.8 / 8
Fibonacci Fib(50) D&C 9.21 / 8

Table: Microbenchmarks parallelized using FastFlow.

Application Skeleton used Performance

YaDT-FF D&C 4.5-7.5 Speedup
StochKit-FF farm 10-11 Scalabitily

SWPS3-FF farm no collector 12.5-34.5 GCUPS

Table: Applications parallelized using FastFlow.

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Assessed results

FastFlow results

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

FastFlow’s worker threads

ideal
0.5us

1us
5us

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

NetFlow

NetFlow

Network protocol to collect IP
traffic information

I by Cisco

I de facto standard (→ IPFIX)

I works on flows: unidir
sequence of packets with
same source, dest and type
of protocol

I generates records hosting:
I version and sequence

number, timestamps
I layer 3 headers & routing

info

LAN

LAN

Router

Internet

Collector

Storage

Analyzer

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

NetFlow

PF RING

Linux new type of network socket

I extremely efficient device to kernel
ring packet copy

I exploits Linux NAPI interface
(interrupts + polling)

I two operation modes
I device to (multiple) kernel rings

→ supports packet directing to
different applications

I device to memory mapped kernel
ring
→ zeroes copy time
→ but directs packets to one
application only

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Architectural design

Three different kind of parallel designs

I simple multiple design re-using sequential components

I explore different possibilities

I to match packet capture related constrains

General design:
I modular in the number of packet capture queues

→ one or more PF RING queues

I modular in the number of threads processing incoming
packets

→ stages in a pipeline: each stage processes part of
the captured packets

→ more pipelines attached to different PF RING

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Base design

PF RING RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

pipe: 1 PF RING queue, 1 reader stage, n stages processing packets

I RDR
I reads captured packets
I groups them in messages
I each packet directed to one stage through hash label
I forwards messages through the pipeline

I WRK
I reads a message (group of packets)
I processes packets with proper (own) hash flag
I on termination forwards resulting records

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Base design

PF RING RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

pipe: 1 PF RING queue, 1 reader stage, n stages processing packets
I RDR

I reads captured packets
I groups them in messages
I each packet directed to one stage through hash label
I forwards messages through the pipeline

I WRK
I reads a message (group of packets)
I processes packets with proper (own) hash flag
I on termination forwards resulting records

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Variations

PF RING RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

PF RING RDR

Hash Table
(part 1)

WRK1

PF RING RDR

Hash Table
(part 1)

WRK1

PF RING

PF RING

RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Variations

PF RING RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

PF RING RDR

Hash Table
(part 1)

WRK1

PF RING RDR

Hash Table
(part 1)

WRK1

PF RING

PF RING

RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Variations

PF RING RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

PF RING RDR

Hash Table
(part 1)

WRK1

PF RING RDR

Hash Table
(part 1)

WRK1

PF RING

PF RING

RDR

Hash Table
(part 1)

WRK1 .. .

Hash Table
(part n)

WRKn

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: architectural design

Packet processing

I Basic network monitoring → very fine grain processing
I extract simple data fields from packets

I More data processing needed for more evolved inspection
strategies

I ffProbe:
I experiments made with the finer grain processing functions

→ results improve with larger grain
and with more stages / pipelines

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: results

Experimental results (absolute)

Mega Memory
schema Par. degree Thr# PPS footprint
1 pipeline Seq 1 3.76 50M
n workers 1R + 1W 2 6.45 94M

1R + 2W 3 8.42 78M

2 PF RING 1R + 1W per pipe 4 10.150 64M
2 pipelines 1R + 2W per pipe 6 10.143 64M

2 PF RING 2R + 1W 3 5.54 115M
1 pipeline 2R + 2W 4 9.13 150M

2R + 3W 5 10.033 150M

on a Dual Nehalem (Xeon E5520, 2.27GHz) with 10 Gbit
Intel-based Silicom NICs

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

ffProbe: results

Comparisons (nProbe)

A single instance does not scale
with the thread number over
3Mpps:

Multiple instances on different
PF RING queues process as
many packets as ffProbe:

Thread No.

Scalability (per probe)

1

2

3

4

1 2 3 4

Queue No.

Standard vs. Quick

1 2 3 4 5 6 7
2.75

5.50

8.25

11.00
Quick
Standard

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Assessments

I High level, highly efficient parallel programming environment
I supports network monitoring
I on commodity hardware
I targeting 10Gbps network interfaces
I different parallel design experimented with negligible

programming effort (once base sequential components have
been defined)

I High speed network monitoring
I special purpose hw → commodity hw
I systems (as tested) in the 3-4K euro range

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Assessments

I High level, highly efficient parallel programming environment
I supports network monitoring
I on commodity hardware
I targeting 10Gbps network interfaces
I different parallel design experimented with negligible

programming effort (once base sequential components have
been defined)

I High speed network monitoring
I special purpose hw → commodity hw
I systems (as tested) in the 3-4K euro range

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Future (ongoing) work

To be improved:

I modularization of analysis code (plugin)

I ...

Product design currently on going:

I clean up and engineering of the code

I documentation (internal, user)

I experiments on larger core configurations

I to be released under open source license

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

Introduction FastFlow ffProbe Conclusions

Any questions ?

{marcod,desensi}@di.unipi.it, deri@ntop.org

Danelutto, Deri, De Sensi http://www.di.unipi.it

Network Monitoring on Multi cores with Algorithmic Skeletons

	Introduction
	
	
	

	FastFlow
	
	
	
	

	ffProbe
	
	
	

	Conclusions

